Jigyaasa
  • Home
No Result
View All Result
Jigyaasa
  • Home
No Result
View All Result
Jigyaasa
No Result
View All Result

How to Avoid Data Leakage When Performing Data Preparation

Subhanshu Singh by Subhanshu Singh
June 22, 2020
in Artificial Intelligence
0
how-to-avoid-data-leakage-when-performing-data-preparation
0
VIEWS
Share on FacebookShare on Twitter

Data preparation is the process of transforming raw data into a form that is appropriate for modeling.

A naive approach to preparing data applies the transform on the entire dataset before evaluating the performance of the model. This results in a problem referred to as data leakage, where knowledge of the hold-out test set leaks into the dataset used to train the model. This can result in an incorrect estimate of model performance when making predictions on new data.

A careful application of data preparation techniques is required in order to avoid data leakage, and this varies depending on the model evaluation scheme used, such as train-test splits or k-fold cross-validation.

In this tutorial, you will discover how to avoid data leakage during data preparation when evaluating machine learning models.

After completing this tutorial, you will know:

  • Naive application of data preparation methods to the whole dataset results in data leakage that causes incorrect estimates of model performance.
  • Data preparation must be prepared on the training set only in order to avoid data leakage.
  • How to implement data preparation without data leakage for train-test splits and k-fold cross-validation in Python.

Let’s get started.

How to Avoid Data Leakage When Performing Data Preparation

How to Avoid Data Leakage When Performing Data Preparation

Photo by kuhnmi, some rights reserved.

Tutorial Overview

This tutorial is divided into three parts; they are:

  1. Problem With Naive Data Preparation
  2. Data Preparation With Train and Test Sets
    1. Train-Test Evaluation With Naive Data Preparation
    2. Train-Test Evaluation With Correct Data Preparation
  3. Data Preparation With k-fold Cross-Validation
    1. Cross-Validation Evaluation With Naive Data Preparation
    2. Cross-Validation Evaluation With Correct Data Preparation

Problem With Naive Data Preparation

The manner in which data preparation techniques are applied to data matters.

A common approach is to first apply one or more transforms to the entire dataset. Then the dataset is split into train and test sets or k-fold cross-validation is used to fit and evaluate a machine learning model.

  • 1. Prepare Dataset
  • 2. Split Data
  • 3. Evaluate Models

Although this is a common approach, it is dangerously incorrect in most cases.

The problem with applying data preparation techniques before splitting data for model evaluation is that it can lead to data leakage and, in turn, will likely result in an incorrect estimate of a model’s performance on the problem.

Data leakage refers to a problem where information about the holdout dataset, such as a test or validation dataset, is made available to the model in the training dataset. This leakage is often small and subtle but can have a marked effect on performance.

… leakage means that information is revealed to the model that gives it an unrealistic advantage to make better predictions. This could happen when test data is leaked into the training set, or when data from the future is leaked to the past. Any time that a model is given information that it shouldn’t have access to when it is making predictions in real time in production, there is leakage.

— Page 93, Feature Engineering for Machine Learning, 2018.

We get data leakage by applying data preparation techniques to the entire dataset.

This is not a direct type of data leakage, where we would train the model on the test dataset. Instead, it is an indirect type of data leakage, where some knowledge about the test dataset, captured in summary statistics is available to the model during training. This can make it a harder type of data leakage to spot, especially for beginners.

One other aspect of resampling is related to the concept of information leakage which is where the test set data are used (directly or indirectly) during the training process. This can lead to overly optimistic results that do not replicate on future data points and can occur in subtle ways.

— Page 55, Feature Engineering and Selection, 2019.

For example, consider the case where we want to normalize a data, that is scale input variables to the range 0-1.

When we normalize the input variables, this requires that we first calculate the minimum and maximum values for each variable before using these values to scale the variables. The dataset is then split into train and test datasets, but the examples in the training dataset know something about the data in the test dataset; they have been scaled by the global minimum and maximum values, so they know more about the global distribution of the variable then they should.

We get the same type of leakage with almost all data preparation techniques; for example, standardization estimates the mean and standard deviation values from the domain in order to scale the variables; even models that impute missing values using a model or summary statistics will draw on the full dataset to fill in values in the training dataset.

The solution is straightforward.

Data preparation must be fit on the training dataset only. That is, any coefficients or models prepared for the data preparation process must only use rows of data in the training dataset.

Once fit, the data preparation algorithms or models can then be applied to the training dataset, and to the test dataset.

  • 1. Split Data.
  • 2. Fit Data Preparation on Training Dataset.
  • 3. Apply Data Preparation to Train and Test Datasets.
  • 4. Evaluate Models.

More generally, the entire modeling pipeline must be prepared only on the training dataset to avoid data leakage. This might include data transforms, but also other techniques such feature selection, dimensionality reduction, feature engineering and more. This means so-called “model evaluation” should really be called “modeling pipeline evaluation”.

In order for any resampling scheme to produce performance estimates that generalize to new data, it must contain all of the steps in the modeling process that could significantly affect the model’s effectiveness.

— Pages 54-55, Feature Engineering and Selection, 2019.

Now that we are familiar with how to apply data preparation to avoid data leakage, let’s look at some worked examples.

Data Preparation With Train and Test Sets

In this section, we will evaluate a logistic regression model using train and test sets on a synthetic binary classification dataset where the input variables have been normalized.

First, let’s define our synthetic dataset.

We will use the make_classification() function to create the dataset with 1,000 rows of data and 20 numerical input features. The example below creates the dataset and summarizes the shape of the input and output variable arrays.

# test classification dataset

from sklearn.datasets import make_classification

# define dataset

X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5, random_state=7)

# summarize the dataset

print(X.shape, y.shape)

Running the example creates the dataset and confirms that the input part of the dataset has 1,000 rows and 20 columns for the 20 input variables and that the output variable has 1,000 examples to match the 1,000 rows of input data, one value per row.

Next, we can evaluate our model on the scaled dataset, starting with their naive or incorrect approach.

Train-Test Evaluation With Naive Data Preparation

The naive approach involves first applying the data preparation method, then splitting the data before finally evaluating the model.

We can normalize the input variables using the MinMaxScaler class, which is first defined with the default configuration scaling the data to the range 0-1, then the fit_transform() function is called to fit the transform on the dataset and apply it to the dataset in a single step. The result is a normalized version of the input variables, where each column in the array is separately normalized (e.g. has its own minimum and maximum calculated).

...

# standardize the dataset

scaler = MinMaxScaler()

X = scaler.fit_transform(X)

Next, we can split our dataset into train and test sets using the train_test_split() function. We will use 67 percent for the training set and 33 percent for the test set.

...

# split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)

We can then define our logistic regression algorithm via the LogisticRegression class, with default configuration, and fit it on the training dataset.

...

# fit the model

model = LogisticRegression()

model.fit(X_train, y_train)

The fit model can then make a prediction for the input data for the test set, and we can compare the predictions to the expected values and calculate a classification accuracy score.

...

# evaluate the model

yhat = model.predict(X_test)

# evaluate predictions

accuracy = accuracy_score(y_test, yhat)

print(‘Accuracy: %.3f’ % (accuracy*100))

Tying this together, the complete example is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

# naive approach to normalizing the data before splitting the data and evaluating the model

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

# define dataset

X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5, random_state=7)

# standardize the dataset

scaler = MinMaxScaler()

X = scaler.fit_transform(X)

# split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)

# fit the model

model = LogisticRegression()

model.fit(X_train, y_train)

# evaluate the model

yhat = model.predict(X_test)

# evaluate predictions

accuracy = accuracy_score(y_test, yhat)

print(‘Accuracy: %.3f’ % (accuracy*100))

Running the example normalizes the data, splits the data into train and test sets, then fits and evaluates the model.

Your specific results may vary given the stochastic nature of the learning algorithm and evaluation procedure.

In this case, we can see that the estimate for the model is about 84.848 percent.

Given we know that there was data leakage, we know that this estimate of model accuracy is wrong.

Next, let’s explore how we might correctly prepare the data to avoid data leakage.

Train-Test Evaluation With Correct Data Preparation

The correct approach to performing data preparation with a train-test split evaluation is to fit the data preparation on the training set, then apply the transform to the train and test sets.

This requires that we first split the data into train and test sets.

...

# split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)

We can then define the MinMaxScaler and call the fit() function on the training set, then apply the transform() function on the train and test sets to create a normalized version of each dataset.

...

# define the scaler

scaler = MinMaxScaler()

# fit on the training dataset

scaler.fit(X_train)

# scale the training dataset

X_train = scaler.transform(X_train)

# scale the test dataset

X_test = scaler.transform(X_test)

This avoids data leakage as the calculation of the minimum and maximum value for each input variable is calculated using only the training dataset (X_train) instead of the entire dataset (X).

The model can then be evaluated as before.

Tying this together, the complete example is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

# correct approach for normalizing the data after the data is split before the model is evaluated

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

# define dataset

X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5, random_state=7)

# split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)

# define the scaler

scaler = MinMaxScaler()

# fit on the training dataset

scaler.fit(X_train)

# scale the training dataset

X_train = scaler.transform(X_train)

# scale the test dataset

X_test = scaler.transform(X_test)

# fit the model

model = LogisticRegression()

model.fit(X_train, y_train)

# evaluate the model

yhat = model.predict(X_test)

# evaluate predictions

accuracy = accuracy_score(y_test, yhat)

print(‘Accuracy: %.3f’ % (accuracy*100))

Running the example splits the data into train and test sets, normalizes the data correctly, then fits and evaluates the model.

Your specific results may vary given the stochastic nature of the learning algorithm and evaluation procedure.

In this case, we can see that the estimate for the model is about 85.455 percent, which is more accurate than the estimate with data leakage in the previous section that achieved an accuracy of 84.848 percent.

We expect data leakage to result in an incorrect estimate of model performance. We would expect this to be an optimistic estimate with data leakage, e.g. better performance, although in this case, we can see that data leakage resulted in slightly worse performance. This might be because of the difficulty of the prediction task.

Data Preparation With k-fold Cross-Validation

In this section, we will evaluate a logistic regression model using k-fold cross-validation on a synthetic binary classification dataset where the input variables have been normalized.

You may recall that k-fold cross-validation involves splitting a dataset into k non-overlapping groups of rows. The model is then trained on all but one group to form a training dataset and then evaluated on the held-out fold. This process is repeated so that each fold is given a chance to be used as the holdout test set. Finally, the average performance across all evaluations is reported.

The k-fold cross-validation procedure generally gives a more reliable estimate of model performance than a train-test split, although it is more computationally expensive given the repeated fitting and evaluation of models.

Let’s first look at naive data preparation with k-fold cross-validation.

Cross-Validation Evaluation With Naive Data Preparation

Naive data preparation with cross-validation involves applying the data transforms first, then using the cross-validation procedure.

We will use the synthetic dataset prepared in the previous section and normalize the data directly.

...

# standardize the dataset

scaler = MinMaxScaler()

X = scaler.fit_transform(X)

The k-fold cross-validation procedure must first be defined. We will use repeated stratified 10-fold cross-validation, which is a best practice for classification. Repeated means that the whole cross-validation procedure is repeated multiple times, three in this case. Stratified means that each group of rows will have the relative composition of examples from each class as the whole dataset. We will use k=10 or 10-fold cross-validation.

This can be achieved using the RepeatedStratifiedKFold which can be configured to three repeats and 10 folds, and then using the cross_val_score() function to perform the procedure, passing in the defined model, cross-validation object, and metric to calculate, in this case, accuracy.

...

# define the evaluation procedure

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

# evaluate the model using cross-validation

scores = cross_val_score(model, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

We can then report the average accuracy across all of the repeats and folds.

Tying this all together, the complete example of evaluating a model with cross-validation using data preparation with data leakage is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

# naive data preparation for model evaluation with k-fold cross-validation

from numpy import mean

from numpy import std

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.preprocessing import MinMaxScaler

from sklearn.linear_model import LogisticRegression

# define dataset

X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5, random_state=7)

# standardize the dataset

scaler = MinMaxScaler()

X = scaler.fit_transform(X)

# define the model

model = LogisticRegression()

# define the evaluation procedure

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

# evaluate the model using cross-validation

scores = cross_val_score(model, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

# report performance

print(‘Accuracy: %.3f (%.3f)’ % (mean(scores)*100, std(scores)*100))

Running the example normalizes the data first, then evaluates the model using repeated stratified cross-validation.

Your specific results may vary given the stochastic nature of the learning algorithm and evaluation procedure.

In this case, we can see that the model achieved an estimated accuracy of about 85.300 percent, which we know is incorrect given the data leakage allowed via the data preparation procedure.

Next, let’s look at how we can evaluate the model with cross-validation and avoid data leakage.

Cross-Validation Evaluation With Correct Data Preparation

Data preparation without data leakage when using cross-validation is slightly more challenging.

It requires that the data preparation method is prepared on the training set and applied to the train and test sets within the cross-validation procedure, e.g. the groups of folds of rows.

We can achieve this by defining a modeling pipeline that defines a sequence of data preparation steps to perform and ending in the model to fit and evaluate.

To provide a solid methodology, we should constrain ourselves to developing the list of preprocessing techniques, estimate them only in the presence of the training data points, and then apply the techniques to future data (including the test set).

— Page 55, Feature Engineering and Selection, 2019.

The evaluation procedure changes from simply and incorrectly evaluating just the model to correctly evaluating the entire pipeline of data preparation and model together as a single atomic unit.

This can be achieved using the Pipeline class.

This class takes a list of steps that define the pipeline. Each step in the list is a tuple with two elements. The first element is the name of the step (a string) and the second is the configured object of the step, such as a transform or a model. The model is only supported as the final step, although we can have as many transforms as we like in the sequence.

...

# define the pipeline

steps = list()

steps.append((‘scaler’, MinMaxScaler()))

steps.append((‘model’, LogisticRegression()))

pipeline = Pipeline(steps=steps)

We can then pass the configured object to the cross_val_score() function for evaluation.

...

# define the evaluation procedure

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

# evaluate the model using cross-validation

scores = cross_val_score(pipeline, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

Tying this together, the complete example of correctly performing data preparation without data leakage when using cross-validation is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

# correct data preparation for model evaluation with k-fold cross-validation

from numpy import mean

from numpy import std

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.preprocessing import MinMaxScaler

from sklearn.linear_model import LogisticRegression

from sklearn.pipeline import Pipeline

# define dataset

X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5, random_state=7)

# define the pipeline

steps = list()

steps.append((‘scaler’, MinMaxScaler()))

steps.append((‘model’, LogisticRegression()))

pipeline = Pipeline(steps=steps)

# define the evaluation procedure

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

# evaluate the model using cross-validation

scores = cross_val_score(pipeline, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

# report performance

print(‘Accuracy: %.3f (%.3f)’ % (mean(scores)*100, std(scores)*100))

Running the example normalizes the data correctly within the cross-validation folds of the evaluation procedure to avoid data leakage.

Your specific results may vary given the stochastic nature of the learning algorithm and evaluation procedure.

In this case, we can see that the model has an estimated accuracy of about 85.433 percent, compared to the approach with data leakage that achieved an accuracy of about 85.300 percent.

As with the train-test example in the previous section, removing data leakage has resulted in a slight improvement in performance when our intuition might suggest a drop given that data leakage often results in an optimistic estimate of model performance. Nevertheless, the examples clearly demonstrate that data leakage does impact the estimate of model performance and how to correct data leakage by correctly performing data preparation after the data is split.

Further Reading

This section provides more resources on the topic if you are looking to go deeper.

Tutorials

  • How to Prepare Data For Machine Learning
  • Applied Machine Learning Process
  • Data Leakage in Machine Learning

Books

  • Feature Engineering and Selection: A Practical Approach for Predictive Models, 2019.
  • Applied Predictive Modeling, 2013.
  • Data Mining: Practical Machine Learning Tools and Techniques, 2016.
  • Feature Engineering for Machine Learning, 2018.

APIs

  • sklearn.datasets.make_classification API.
  • sklearn.preprocessing.MinMaxScaler API.
  • sklearn.model_selection.train_test_split API.
  • sklearn.linear_model.LogisticRegression API.
  • sklearn.model_selection.RepeatedStratifiedKFold API.
  • sklearn.model_selection.cross_val_score API.

Articles

  • Data preparation, Wikipedia.
  • Data cleansing, Wikipedia.
  • Data pre-processing, Wikipedia.

Summary

In this tutorial, you discovered how to avoid data leakage during data preparation when evaluating machine learning models.

Specifically, you learned:

  • Naive application of data preparation methods to the whole dataset results in data leakage that causes incorrect estimates of model performance.
  • Data preparation must be prepared on the training set only in order to avoid data leakage.
  • How to implement data preparation without data leakage for train-test splits and k-fold cross-validation in Python.

Do you have any questions?


Ask your questions in the comments below and I will do my best to answer.

Tags: aiartificial intelligenceData Preparationmachine learning
Previous Post

Tour of Data Preparation Techniques for Machine Learning

Next Post

Unique material design for brain-like computations

Next Post

Unique material design for brain-like computations

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Category

  • -core
  • -inch
  • -year-old
  • 'anti-procrastination'
  • 'bang'
  • 'gold'
  • 'plug
  • 'Trending'
  • 0
  • 000 mah battery
  • 1
  • 10 billion dollars
  • 100gb
  • 11th gen
  • 1mii
  • 1mii deals
  • 2
  • 2-in-1
  • 2020 election
  • 2020 elections
  • 2020 presidential election
  • 20th century fox
  • 20th century studios
  • 2d
  • 2in1
  • 3.5 ghz
  • 35th
  • 360hz
  • 3d printing
  • 3dprinting
  • 4-series
  • 4k
  • 50 states of fright
  • 5g
  • 64-megapixel camera
  • 65
  • 8bitdo
  • 8k
  • a dark path
  • a10
  • a20
  • a20 gen 2
  • a40
  • a40tr
  • a50 wireless
  • abide
  • abortion
  • absentee ballots
  • Academy
  • acadiana mall
  • accelerated
  • accept sender
  • accepting
  • accessibility
  • accessibility center of excellence
  • acer
  • acer deals
  • acer spin 7
  • acerspin7
  • Acorn
  • action camera
  • action figures
  • active noise cancellation
  • Activision
  • activision blizzard
  • Activists
  • actually
  • ada
  • adam savage
  • addicted
  • administration
  • adobe
  • adopt
  • adrian smith
  • ads
  • adult swim
  • advanced optimus
  • advertising
  • affect
  • affordable
  • African
  • After
  • after math
  • aftermath
  • agriculture
  • ai
  • air carrier
  • air pollution
  • air quality
  • air travel
  • aircraft
  • AirDrop
  • airline
  • airplanes
  • airpods pro
  • airports
  • Airtel
  • ajit pai
  • alex winter
  • alexa
  • alexa for residential
  • alibaba
  • alice braga
  • alien addiction
  • aliens
  • Alienware
  • alienware 25
  • alienware 27
  • alienware 38
  • alienware deals
  • alipay
  • all up
  • all-electric
  • alphabay
  • alphabet
  • alter
  • Amateur
  • amazfit
  • amazing
  • amazon
  • amazon alexa
  • amazon deals
  • amazon echo
  • amazon flex
  • amazon pay
  • amazon prime
  • amazon prime air
  • amazon prime video
  • amazon.subtember
  • Amazon's
  • amazonalexa
  • amazonpay
  • Ambient
  • amd
  • AMD's
  • American
  • american horror story
  • Amnesia
  • Among
  • amongst
  • ampere
  • analysis
  • anarchists
  • anc
  • Ancient
  • andrea riseborough
  • andrea stewart
  • android
  • android 10
  • android auto
  • android automotive
  • android tablet
  • Android's
  • android10
  • androidtablet
  • animal crossing
  • animation
  • anime
  • anker
  • anker deals
  • annihilation
  • anniversary
  • announcements
  • announces
  • anode
  • Another
  • ant man 3
  • antenna
  • anthony carrigan
  • anti-cheat
  • anti-tracking
  • antibiotics
  • antibodies
  • antibody
  • anticipated
  • antifa
  • antitrust
  • Antiviral
  • antlers
  • anwr
  • anxiety
  • anxious
  • anya taylor joy
  • anyone
  • Aorus
  • apartments
  • apollo 11
  • apologizes
  • app
  • app store
  • apparel
  • appeals
  • apple
  • apple arcade
  • apple arm
  • apple deals
  • apple health
  • apple rumors
  • apple safari
  • apple silicon
  • apple store
  • apple tv
  • apple vs epic
  • apple watch
  • apple watch series 3
  • Apple's
  • application
  • approaching
  • approximately
  • apps
  • ar
  • Arcade
  • arcade stick
  • archives
  • arctic
  • arctic national wildlife refuge
  • area51m
  • argument
  • arm
  • arnold schwarzenneger
  • art gallery
  • artemis mission
  • Artificial Intelligence
  • arturia
  • asobo studio
  • asphalt
  • Assassin's
  • astro
  • astro gaming
  • Astro's
  • astrogaming
  • Astronomers
  • astronomy
  • Astrophysics
  • asus rog strix scar g15
  • asus rog strix scar g15 review
  • Asus'
  • at home fitness
  • at&t
  • atomic
  • attach
  • Attackers
  • Attacking
  • attempts
  • attorney general
  • auction
  • audible
  • audio
  • audiobooks
  • augmented reality
  • augmented reality glasses
  • august
  • august wifi smart lock
  • aukey
  • aukey deals
  • Aurora
  • australia
  • Australia's
  • Australian
  • australian police
  • Authenticator
  • Authorities
  • authors
  • autofocus
  • automation
  • Autonomous
  • autonomous vehicle
  • Autophagy
  • autopilot
  • autoplay
  • av
  • available
  • avatar the last airbender
  • Avengers
  • aviation
  • ayo edibiri
  • azula
  • babies
  • baby yoda
  • backhaul
  • backwards compatibility
  • bacteria
  • balloon
  • ban
  • barrierfree
  • bass
  • batman
  • batman the animated series
  • batmobile
  • batteries
  • battery
  • Battery-free
  • battle
  • battle royale
  • bay area
  • be prepared
  • Beating
  • beats
  • beats deals
  • beautiful
  • beauty
  • bedding
  • bedroom
  • beer
  • behavior
  • behind the scenes
  • Being
  • Belgian
  • believed
  • Bering
  • bering sea
  • best buy deals
  • best of gizmodo
  • beta
  • bethesda
  • bh deals
  • bh photo deals
  • bicycle
  • biden
  • biden-harris
  • big boys
  • big mouth
  • big oil
  • bigger
  • biggest
  • bike
  • bill and ted face the music
  • bill barr
  • bill sienkiewicz
  • billion
  • billy crystal
  • biocontainment
  • biodiversity
  • biohackers
  • biohacking
  • biological
  • bird box
  • Birds
  • bitcoin
  • Black
  • black christmas
  • black hole
  • black lives matter
  • black panther
  • black widow
  • Blade
  • blast
  • blink
  • blink indoor
  • blink outdoor
  • block
  • blocks
  • blogging
  • Blood
  • blood-clotting
  • blu de barrio
  • blu hunt
  • Blu-ray
  • bluetooth
  • bluetooth headphones
  • bluetooth speaker
  • bluetooth speakers
  • bmi
  • board games
  • boat parade
  • boats
  • bob mcleod
  • Bobble
  • bolsonaro
  • bomberman
  • boneless chicken wings
  • book review
  • books
  • bookshelf injection
  • boosts
  • bounce music
  • box office
  • boxes
  • boycott
  • Boyega
  • braille
  • brain
  • brain computer interface
  • brain computer interfaces
  • brain-machine interface
  • Brainstem
  • brand-new
  • branding
  • brandon cronenberg
  • brazil
  • breakdown
  • breaks
  • breast
  • brigette lundy paine
  • brings
  • broadband
  • broadcast
  • brookings institution press
  • brooklyn
  • browser
  • budget
  • budget laptops
  • bug
  • bug fixes
  • bugs
  • build
  • bulk collection
  • bulk data collection
  • bullshit resistance school
  • burned
  • burning
  • burrowing
  • business
  • business laptops
  • butterfly
  • buyers guide
  • bytedance
  • cadmium
  • cake
  • california
  • california wildfires
  • call of duty
  • call of duty black ops cold war
  • call of duty league
  • call of duty: warzone
  • called
  • callofduty
  • callofdutyblackopscoldwar
  • callofdutyleague
  • Calls
  • calltoaction
  • Cambrian
  • camera
  • cameras
  • campaign
  • campaign signs
  • Can't
  • cancer
  • cancer alley
  • canine
  • Canon
  • captain america
  • captions
  • capture
  • Capturing
  • carbon
  • carcinogens
  • cars
  • cartivator
  • cary elwes
  • cases
  • cassandra clare
  • catnap
  • cbs
  • cbs all access
  • cd projekt red
  • cdc
  • cdl
  • cdpr
  • celebrates
  • Cells
  • Celtics
  • censorship
  • century
  • centurylink
  • chadwick boseman
  • chair
  • chairs
  • chamois
  • Champion
  • Championship
  • chance
  • Change
  • changes
  • channel zero
  • charging stations
  • charity
  • charlie heaton
  • cheap
  • cheaper
  • cheapest
  • cheating
  • Check
  • checked
  • cher wang
  • chest
  • chicago
  • chicken wings
  • Children
  • childrens books
  • childs play
  • china
  • Chinese
  • chips
  • chipset
  • choir
  • Cholesterol
  • chris claremont
  • chris matheson
  • christmas
  • christopher abbott
  • christopher nolan
  • chrome
  • Chromebooks
  • chucky
  • CineBeam
  • citadel
  • cities
  • city council meeting
  • civil liberties
  • Clarifying
  • class
  • classes
  • Classic
  • clean
  • Cleaning
  • clients
  • Climate
  • climate change
  • climate policy
  • clint barton
  • Clippers
  • clothing
  • cloud
  • cloud computing
  • cloud storage
  • Cloudflare
  • club pro+ tws
  • clusterfucks
  • coastal communities
  • Coaxing
  • cobra jet
  • cobra kai
  • cod
  • coffee
  • collaborative
  • college sports
  • Color
  • colorado
  • colors
  • comcast
  • Comey
  • comics
  • comixology
  • commerce
  • commerce department
  • common
  • commutes
  • company
  • competition
  • complaint
  • completely
  • complimentary
  • compound
  • Comprehensive
  • computational
  • computer
  • computer building
  • computers
  • concept art
  • concerning
  • confirmed
  • confirms
  • Connacht
  • connected home
  • connectedhome
  • consciousness
  • conservation
  • Conserve
  • conspiracies
  • conspirators
  • Constant
  • construct
  • Consume
  • consumer tech
  • contact tracing
  • contaminated
  • contamination
  • content moderation
  • continuous
  • contract
  • contractor
  • contractors
  • contracts
  • control
  • controller
  • convert
  • convertible
  • cooking
  • cops
  • cord cutters
  • cordless
  • coronavirus
  • corsair
  • cortisone
  • cosplay
  • costs
  • Could
  • countless
  • courts
  • covertly
  • covid 19
  • covid 19 reopening
  • COVID-
  • cpu
  • cpus
  • created
  • Creativity
  • Creed
  • creepypasta
  • crime
  • criteria
  • critical race theory
  • Croatia
  • cross-site tracking
  • crossover
  • crowdfunding
  • crunchyroll
  • crusher evo
  • Crysis
  • crystal dynamics
  • current
  • cx 400bt
  • CyberGhost
  • Cyberpunk
  • cybersecurity
  • cytokine
  • dangerous
  • daniel prude
  • dark shadows
  • dark web
  • darling
  • darpa
  • das
  • data
  • data portability
  • data privacy
  • data security
  • data transfer project
  • dating
  • david benioff
  • david polfeldt
  • davidbenioff
  • Daylight
  • daylight saving time
  • db weiss
  • dbweiss
  • dc
  • dc comics
  • dc fandome
  • ddos
  • ddos attacks
  • deadly
  • deals
  • dean parisot
  • death
  • debunks
  • debuts
  • Decades-old
  • Deciphering
  • decisions
  • declares
  • deep learning
  • deepfake
  • deepfakes
  • deepmind
  • DeepMind's
  • defending democracy program
  • deficiency
  • deforestation
  • del rey
  • delay
  • delays
  • deletes
  • deliveries
  • delivery
  • dell
  • dell deals
  • demanding
  • democratic party
  • demonstrate
  • demonstrates
  • Demonstrating
  • denim
  • Department
  • department of commerce
  • department of defense
  • Dependence
  • Depot
  • Depression
  • deron j powell
  • Descent
  • describes
  • design
  • designation
  • designers
  • details
  • detecting
  • detection
  • determine
  • dev patel
  • develop
  • developers
  • development
  • developmental
  • device
  • devices
  • dexamethasone
  • diabetes
  • Diabetes-in-a-dish
  • didn't
  • diesel
  • diets
  • differing
  • digital
  • digital cameras
  • digital diversions
  • Digital's
  • Dimensity
  • dinosaur
  • dipayan ghosh
  • direct
  • disabilities
  • disasters
  • Discord
  • discount
  • discover
  • discovered
  • Discovering
  • discovers
  • discovery
  • disenchantment
  • disney
  • disney plus
  • disney plus hotstar
  • disneyplus
  • display
  • displayhdr 600
  • Disrespect
  • dissociation
  • distance learning
  • ditch
  • Division
  • diy
  • dji
  • Djokovic
  • dlc
  • dlss
  • dna
  • do all the letters of the alphabet next you cowards
  • docs
  • dod
  • Dodder
  • doesn't
  • dogs
  • doing
  • doj
  • Dollars
  • dolphins
  • don mancini
  • don't
  • donald trump
  • donation
  • donnie yen
  • doom
  • doom eternal
  • doom ii
  • doometernal
  • doorbell
  • doorbell cams
  • doorbells
  • dorm
  • download
  • dragoncon
  • dragster
  • dramatically
  • dream edition
  • Dreamcast
  • drivers
  • driving
  • drone
  • drone delivery
  • drones
  • dropbox
  • drug-resistant
  • drugs
  • dryer
  • dual-screen
  • dune
  • dungeons and dragons
  • duo evo plus
  • Dynabook
  • dynamics
  • Dyson
  • dystopia
  • e-commerce
  • e-ink
  • e-mail
  • ea
  • earbuds
  • earlier
  • Earliest
  • Early
  • earth league international
  • earth observation
  • Earth's
  • easter
  • easter eggs
  • ecg
  • echo auto
  • echo buds
  • echoauto
  • ecofascism
  • economy
  • ed solomon
  • edgar wright
  • edge
  • Edinburgh
  • Edison
  • edison software
  • Edition
  • education
  • edward snowden
  • Effective
  • Elderly
  • election
  • election 2020
  • elections
  • electric
  • electric car
  • electric scooters
  • electric truck
  • electric vehicle
  • electrical
  • electrolyte
  • electron
  • electronic
  • electronic arts
  • electronic skin
  • elephant
  • elephants
  • elon musk
  • emails
  • embedded
  • Emergency
  • emissions
  • enables
  • enc
  • ending
  • endurance peak 2
  • endurance peak ii
  • energy
  • engadget podcast
  • engadgetdeals
  • engadgetpodcast
  • engadgetupscaled
  • Engineers
  • England
  • enhance
  • Enjoy
  • entertainment
  • Entry-level
  • environment
  • environmental protection agency
  • eoin colfer
  • epa
  • epic
  • epic games
  • epic vs apple
  • Epic’s
  • epicgames
  • episode
  • equipped
  • Erangel
  • eshop
  • espionage
  • esports
  • esportssg
  • establish
  • Estrogen
  • eta
  • Europe's
  • European
  • eurorack
  • euthanasia
  • euv
  • ev
  • Every
  • evictions
  • evidence
  • evolution
  • examines
  • excellent
  • exclusive
  • exercise
  • exist
  • expanded universe
  • expands
  • expensive
  • experience accessibility team
  • Experimental
  • explains
  • explorer project
  • export
  • exposure
  • exposure notification
  • extension
  • extinction
  • extreme e
  • extreme ultraviolet
  • extremee
  • exxon
  • exxonmobil
  • faa
  • face masks
  • face shields
  • facebook
  • facebook live
  • facebook wrote a press release
  • Facebook's
  • facilities
  • factors
  • failure
  • Failures
  • fainting
  • fake
  • fake events
  • fake news
  • fakes
  • falcon 9
  • fall 2020
  • fall guys
  • families
  • fascism
  • fast
  • fastest
  • Fastly
  • FAU-G
  • fbi
  • fcc
  • fda
  • FDA's
  • feature
  • federal communications commission
  • federalcommunicationscommission
  • fediverse
  • fedot tumusov
  • Felix
  • Females
  • femtech
  • fertility tech
  • fibre
  • Fidelio
  • Fidelity
  • fields
  • Figuring
  • film
  • finally
  • finally multicolor hue lightstrips
  • Finding
  • finds
  • Finest
  • fingerprint reader
  • fire tv
  • first
  • first amendment
  • fisa
  • fitbit
  • fitbit charge 4
  • fitness
  • fitness bands
  • fitness gear
  • fitness trackers
  • Fitter
  • five eyes
  • flash
  • flaunts
  • flexible
  • flexible display
  • Flight
  • flight simulator 2020
  • flint
  • flood
  • Floppy'
  • florida
  • flowering
  • flying car
  • flying taxis
  • fold 2
  • foldable
  • foldable phone
  • foldables
  • folding
  • Following
  • food
  • food justice
  • food security
  • Food-web
  • football
  • footwear
  • forces
  • forcibly
  • ford
  • fordpass
  • forecast
  • foreign
  • forests
  • Forget
  • fortnite
  • Fortnite's
  • Forty-Year-Old
  • Forward-thinking
  • forwarding limit
  • Fossil
  • fossils
  • found
  • fountain pens
  • fox news
  • fox soccer plus
  • France
  • fraud
  • free
  • free comics
  • free speech
  • free-to-play
  • freshwater
  • Friday
  • frontier
  • fuck fossil fuels
  • Fujifilm
  • full frame cameras
  • full-frame
  • Functions
  • Fungi
  • future
  • g-sync
  • g-sync ultimate
  • g9
  • gadgetry
  • gadgets
  • Galaxy
  • galaxy a42 5g
  • galaxy book flex
  • galaxy book flex 5g
  • galaxy buds plus
  • galaxy fit
  • galaxy fit 2
  • galaxy fold
  • galaxy s20
  • galaxy s20 fan edition
  • galaxy s20 ultra
  • galaxy tab a7
  • galaxy watch 3
  • galaxy z fold 2
  • galaxy z fold 2 5g
  • galaxy z fold2
  • galaxybookflex
  • galaxybookflex5g
  • gallery
  • game & watch
  • game boy
  • game of thrones
  • game-breaking
  • gameboy
  • gameofthrones
  • Gamers
  • games
  • Gamifying
  • gaming
  • gaming desktops
  • gaming gear
  • gaming laptop
  • gaming laptops
  • gaming monitor
  • gaming shelf
  • gas pump
  • gas station
  • gaspump
  • gasstation
  • gear
  • geforce
  • geforce rtx
  • geforce rtx 2060
  • geforce rtx 3080
  • geforcertx3080
  • gene kozicki
  • generous
  • Genes
  • Genetic
  • genetics
  • Genome
  • Genomic
  • Germany
  • Germany's
  • getting
  • getting out
  • giancarlo esposito
  • Giant
  • gig economy
  • gig workers
  • gizmos
  • glaciers
  • glitch
  • global tel link
  • Globalization
  • Gmail
  • go vacation
  • godzilla vs kong
  • gofundme
  • goltv
  • gong li
  • google
  • google ad policy
  • google ads
  • google assistant
  • google assistant snapshot
  • google chrome
  • google docs
  • google drive
  • google images
  • google kids space
  • google magenta
  • google maps
  • google play
  • google podcasts
  • Google's
  • googlekidsspace
  • gopro
  • gorilla glass
  • gotten
  • gpu
  • gpus
  • Graduate
  • Grand
  • grand central publishing
  • graphic neural network
  • graphically-impressive
  • graphics
  • graphics card
  • graphics cards
  • gravitational wave
  • Gravity
  • gravity waves
  • green drone
  • grills
  • groceries
  • growth
  • guidance
  • guidelines
  • guides
  • Guilt
  • Gulls
  • gwichin
  • hackers
  • hacking
  • hairdye
  • halloween
  • Handgrip
  • handing
  • handle
  • happens
  • happier
  • haptics
  • hard truths
  • harder
  • hardware
  • harvard
  • harvard university
  • harvarduniversity
  • hashes
  • Hastings
  • have your cake and eat it too
  • hawc
  • hawk rev vampire slayers
  • hawkeye
  • hbo
  • hbo max
  • hdr10+
  • headache
  • headed
  • headphones
  • headpohones
  • headset
  • headsets
  • health
  • Hearing
  • heart
  • heat wave
  • heat-free
  • Heavy
  • Hedge
  • heliophysics
  • hell to the no
  • hellfeed
  • hello games
  • Helminth
  • Helping
  • henry zaga
  • hepa
  • Here's
  • herman cain
  • heroes
  • hey email app
  • higher
  • highfire
  • hillary clinton
  • hints
  • hisense
  • history
  • hitting the books
  • hittingthebooks
  • holiday
  • holidays
  • home
  • home fitness
  • home schooling
  • home security
  • home theater
  • homepage
  • homepod
  • homesecurity
  • homework gap
  • honeybees
  • honeysuckle
  • honor
  • Honor's
  • horror
  • horsepower
  • Hostgator
  • hosting
  • hosts
  • hot toys
  • Hotspots'
  • hotstar
  • House
  • households
  • hp
  • hp deals
  • htc
  • Huawei
  • Hubble
  • hue play gradient
  • hugo weaving
  • human
  • Hunter
  • hunters
  • hurricane katrina
  • hurricane laura
  • hurricane season
  • hybrid
  • hypersonic
  • hypersonic missiles
  • hypertension
  • hyperx
  • Hyrule
  • i miss midi music
  • ian alexander
  • iap
  • ice ice maybe
  • ice on thin ice
  • Iceland
  • icloud
  • id software
  • id.4
  • ideas
  • Identification
  • identified
  • identify
  • idw
  • ifa
  • ifa 2020
  • ifa2020
  • ihome
  • ihome deals
  • imac
  • images
  • imitate
  • immunity
  • immuno-acceptance
  • immunotherapy
  • impacts
  • important
  • improved
  • Improving
  • in-app purchases
  • includes
  • income
  • incorrect
  • increase
  • increased
  • India
  • Indian
  • indie
  • individuals
  • indoor
  • inexpensive
  • Infants
  • infection
  • infections
  • infinity ward
  • Inflammation
  • influencer
  • influencers
  • Informing
  • informs
  • infotainment
  • Ingenious
  • initiation
  • injunction
  • Inkjet
  • Insect
  • Insight
  • Insights
  • insta360
  • insta360 one r
  • Instagram
  • instagram reels
  • instagram stories
  • installation
  • Instant
  • instant pot
  • instant pot smart wifi
  • instruments
  • insulin
  • integrated graphics
  • intel
  • intel core i9
  • intel deals
  • intel evo
  • intel xe graphics
  • intelevo
  • interact
  • interior
  • intermediate-mass black hole
  • intermittent computing
  • international
  • internet
  • internet archive
  • internet balloons
  • internet culture
  • internet research agency
  • interventions
  • interview
  • introduce
  • introduces
  • introducing
  • intrusive
  • invest
  • Investigational
  • investment
  • invests
  • invoice
  • ios
  • ios 13
  • ios 13.7
  • ios 14
  • ios13
  • ios14
  • iot
  • ip54
  • ipad
  • ipad air
  • ipad os 14
  • ipados14
  • iPhone
  • ipod
  • Islanders
  • isotope
  • israel
  • Italian
  • italy
  • items
  • its business time
  • japan
  • jason scott lee
  • jaxjox
  • jbl
  • jbl clip 4
  • jbl go 3
  • jbl partybox 310
  • jbl partybox on-the-go
  • jbl xtreme 3
  • JBL's
  • jeans
  • jedi
  • jeff bezos
  • jeff bond
  • jennifer jason leigh
  • jenny slate
  • jet li
  • jetpacks
  • jim butcher
  • JioFiber
  • jj abrams
  • joe biden
  • johnson johnson
  • jon favreau
  • jonathan majors
  • jordan eldredge
  • jordan peele
  • josh boone
  • josh guillory
  • journalism
  • juicer
  • july 4th
  • Jumping'
  • jumpstarts
  • jurassic world dominion
  • jurnee smollett
  • just transition
  • Justice
  • juul
  • jw nijman
  • jw rinzler
  • kamala harris
  • Karaoke
  • karate kid
  • kate bishop
  • kate bush
  • keanu reeves
  • Keeping
  • kenosha
  • kevin conway
  • keyboards
  • keystep
  • keystep pro
  • kick stage
  • Kidneys
  • kids
  • killer
  • king of sweden
  • kinja deals
  • konami
  • koofr
  • kotaku core
  • kotakucore
  • lab-grown
  • Labor
  • lafayette police chief scott morgan
  • laika
  • Lakers
  • lana wachowski
  • landlords
  • laptop
  • laptops
  • large attachments
  • largest
  • laser
  • laser tv
  • latest
  • launch
  • launch complex 2
  • launched
  • launches
  • laura ingraham
  • laurencefishburne
  • lawsuit
  • lawsuits
  • layout
  • leader
  • leading
  • leading-edge
  • League
  • league of legends
  • league of legends championship series
  • leak
  • leakages
  • Leaked
  • leaks
  • leaky buckets
  • learn
  • Legends
  • legion
  • legion slim 7i
  • Leinster
  • Lemonade
  • lenovo
  • lenovo legion 7
  • lenovo legion slim 7i
  • lenovo smart clock
  • lenovo smart clock essential
  • lenovo tab m10 hd gen 2
  • lenovo tab p11 pro
  • lenovo yoga
  • lenovo yoga 9i
  • leopard
  • lessen
  • letting
  • lev grossman
  • level
  • lewis hamilton
  • lg
  • lg deals
  • lg wing
  • lgbtq
  • license
  • licensing
  • lidar
  • lifestyle
  • light
  • Lightning
  • lightsabers
  • lightstrips
  • lightweight
  • ligo
  • linked
  • Links
  • Linux
  • lite
  • lithography
  • Little
  • liu cixin
  • liu yifei
  • liucixin
  • live
  • live sports
  • livestream
  • livestreaming
  • lo-fi
  • lo-fi player
  • local news
  • Locating
  • location
  • lockhart
  • lockheed martin
  • Loggerhead
  • logitech
  • logo
  • longread
  • looks
  • loon
  • loses
  • louisiana
  • lovecraft country
  • lovecraft country recaps
  • low-cost
  • Lowe's
  • lower ninth ward
  • lpddr5
  • lsc
  • lucasfilm
  • Lucid
  • lucid air
  • lucid motors
  • LucidLink
  • lucifer
  • Lumix
  • lutron
  • m night shyamalan
  • macbook air
  • macbook pro
  • mach 5
  • mach-e
  • machine learning
  • magenta
  • Magenta's
  • magicbook pro 16
  • mail
  • mail in ballots
  • mail-in voting
  • Mail's
  • maintain
  • maisie williams
  • makes
  • Making
  • malaria
  • males
  • Managing
  • Mandalorian
  • Mandalorian's
  • mandy patinkin
  • manipulated media
  • map
  • mapping
  • marijuana
  • marine
  • Mario
  • mario kart
  • mario kart live
  • mario kart live home circuit
  • mark zuckerberg
  • market
  • Marketing
  • martial arts
  • marvel
  • marvel cinematic universe
  • marvel comics
  • marvel studios
  • Marvel's
  • marvelentertainment
  • marvels avengers
  • masks
  • massive entertainment
  • massiveentertainment
  • mastodon
  • mastodons
  • MatePad
  • material
  • mathematical
  • Matric
  • matt ruff
  • matter
  • matterport
  • mattress
  • mattresses
  • mauritius
  • max-q
  • meat
  • mechanical
  • media
  • MediaTek
  • mediatonic
  • medicine
  • mega city one
  • mega-shark
  • meghan markle
  • meghanmarkle
  • meh deals
  • members
  • memes
  • memory
  • mental health
  • mentality
  • mergers and acquistions
  • messages
  • messenger
  • metadata
  • metal gear solid
  • Meteorite
  • method
  • metroid
  • miami
  • michael k williams
  • Microbes
  • microfiber
  • Microgel
  • Microsoft
  • microsoft edge
  • Microsoft's
  • mid-range
  • Middle
  • midi
  • midi controller
  • migrations
  • miir deals
  • military technology
  • militias
  • Millions
  • Minecraft–
  • Miniature
  • minimize
  • mining
  • mirrorless
  • mirrorless cameras
  • misha green
  • misinformation
  • mistakes
  • mite-y
  • mixed reality
  • mixes
  • mobil
  • mobile
  • Mobile's
  • model
  • model 3
  • model s
  • model x
  • model y
  • moderna
  • modification
  • mods
  • modular synthesizer
  • mojang
  • molecular
  • Molecule
  • monique candelaria
  • monitor
  • Monitoring
  • Monsters
  • months
  • moon
  • morally bankrupt exploitative shitbags
  • more oled laptops please
  • mortality
  • motherandroid
  • Motorola
  • motorola one
  • motorola one 5g
  • Motorola's
  • Motors
  • mouse
  • moveaudio s200
  • movie
  • movie theaters
  • movies
  • movies anywhere
  • mozilla firefox
  • mq direct deals
  • mr carey
  • msi
  • msi summit
  • msi summit series
  • MSI's
  • mulan
  • multiverses
  • Munster
  • Murray
  • museum
  • museums
  • music
  • music making
  • music quiz
  • musical instruments
  • Musk's
  • mustang
  • mustang mach-e
  • mutations
  • myneato
  • mystery
  • mystery jetpack
  • myths
  • naked
  • naming
  • Nanoearthquakes
  • nanomachine
  • nasa
  • national security agency
  • Nations
  • Natural
  • Nature
  • naughty dog
  • Neanderthals
  • neato
  • neato d10
  • neato d8
  • neato d9
  • nebraska
  • needs
  • Neglected
  • nemesis
  • neon
  • nest
  • nest hello
  • netflix
  • networks
  • neuralink
  • neurons
  • new mutants
  • new orleans
  • new swift 5 and swift 3 from acer
  • new tab page
  • new years eve
  • newegg
  • newegg deals
  • newest
  • Newly
  • news
  • newsletter
  • newyork
  • next-gen
  • nfl
  • nfl network
  • nfl redzone
  • ngo
  • nhra nationals
  • nhtsa
  • nick antosca
  • nickelodeon
  • nicolas cage
  • nike
  • nike deals
  • niki caro
  • ninebot
  • ninja
  • nintendo
  • nintendo switch
  • nintendo switch deals
  • no man's sky
  • no time to die
  • noah ringer
  • noise
  • noise cancelling
  • noise-canceling
  • Nokia
  • nokia 3310
  • Nominet
  • north korea
  • north pole
  • northern
  • nos4a2
  • nostalgia
  • not the fun jedi saga
  • notebook
  • notice
  • Novak
  • Novel
  • novels
  • nsa
  • nsa scandal
  • nubia watch
  • nubia watch review
  • Nuclear
  • Nuggets
  • nuke
  • Nurses
  • nvidai
  • nvidia
  • nvidia geforce
  • nvidia rtx 3070
  • nvidia rtx 3080
  • nvidia rtx 3090
  • Nvidia’s
  • nvidiageforce
  • nxtpaper
  • nyc
  • nypd
  • Ocean
  • oceans
  • oculus quest
  • offer
  • offered
  • offering
  • offers
  • official
  • oil and gas
  • oil spill
  • older
  • Olufsen's
  • olympics
  • on demand
  • oneplus
  • oneplus 7t
  • oneplus watch
  • online
  • OnlyFans
  • onmail
  • open the flood gates
  • opens
  • operating
  • Operation
  • opioids
  • Oracle
  • orbit
  • oregon trail
  • origami
  • origin
  • Orion
  • orion pictures
  • our garbage president
  • outage
  • outages
  • Outbreak
  • Overcast's
  • overheating
  • OVHcloud
  • oxygen
  • P-Series
  • pacemakers
  • packages
  • packs
  • paleontology
  • panasonic
  • panasonic lumix s5
  • Panasonic's
  • Pandemic
  • Panther
  • paper
  • paper based electronics
  • paramount
  • participate
  • partybox
  • pascal
  • patch
  • patent
  • Pattinson
  • pavement
  • paying
  • payments
  • paypal
  • pbug
  • pc
  • pc gaming
  • pco
  • peacock
  • Peculiar
  • peddling to nowhere
  • pedro pascal
  • peloton
  • penguin random house
  • pens
  • Pentagon
  • People
  • permafrost
  • permanent
  • permanently
  • permuted press
  • Personal
  • personal computing
  • personal data
  • personalization
  • petrochemicals
  • pfizer
  • Philips
  • philips hue
  • phone
  • phone cases
  • phone trees
  • phones
  • Photography
  • photon
  • Photos
  • pictures
  • pilot
  • pins
  • Pinterest
  • pinterest today
  • pique your interest
  • Pixel
  • plague rallies
  • planetary
  • planetary science
  • plans
  • Plant
  • plants
  • Plasmin
  • plastic
  • plastic pollution
  • platforms
  • play store
  • playstation
  • playstation 4
  • playstation 5
  • playstation vr
  • playstation4
  • playstationvr
  • please help my brain its very sick
  • please no
  • pleasure
  • plugin
  • poaching
  • poco x3
  • pocox3
  • podcast
  • podcasts
  • point-of-care
  • pokemon go
  • polar orbit
  • Polestar
  • polestar 2
  • police
  • police shootings
  • policy
  • Political
  • political ads
  • politics
  • Pollination
  • populations
  • porsche
  • Portable
  • portable speaker
  • portable speakers
  • portfolios
  • Portugal
  • possessor
  • Possible
  • Post-COVID
  • postal apocalypse
  • postal service
  • potential
  • powerful
  • powertrain
  • practical magic
  • pre-order
  • Predator
  • predator x25
  • predict
  • predictions
  • pregnancy
  • pregnancy tests
  • prehistoric
  • premier access
  • Premiere
  • premium
  • preorder
  • preorders
  • prepared
  • presents
  • president
  • president trump
  • presige 14 evo
  • pressure cooker
  • pressure-lowering
  • presumably
  • Preventing
  • preview
  • price
  • price drop
  • prices
  • primal
  • Prime
  • prime air
  • prime deliveries
  • prime gaming
  • prime video
  • prince harry
  • princeharry
  • principles
  • print
  • printer
  • Prior
  • prison phone app
  • privacy
  • privacy and security
  • problems
  • processor
  • processors
  • product
  • Products
  • Program
  • programs
  • prohibited
  • project
  • project 10 million
  • project athena
  • projector
  • projectors
  • proof
  • Proposed
  • props
  • propulsion
  • prosthetics
  • protein
  • protests
  • prototype
  • provide
  • ps plus
  • ps vr
  • ps1
  • ps2
  • ps3
  • ps4
  • ps5
  • psvr
  • pubg
  • pubg corporation
  • pubg mobile
  • pubg mobile nordic map
  • pubgmsg
  • purchase
  • purchased
  • purdue university
  • putting
  • pxo
  • qanon
  • qopy notes
  • quadruple
  • Qualcomm
  • qualcomm snapdragon
  • qualcomm snapdragon 8cx gen 2
  • Qualcomm's
  • quantum
  • quarter mile
  • quicker
  • quickly
  • quoll
  • quote
  • quote tweet
  • race
  • race car
  • racing
  • racism
  • Radiocarbon
  • Radiologists
  • Raised
  • ralph macchio
  • ram
  • rami ismail
  • RAMPOW
  • randomised
  • Raptors
  • rare earth metals
  • ray-tracing
  • raytheon
  • raytracing
  • razer
  • razer blade 15
  • razer deals
  • Razer's
  • razr
  • razr 2
  • reaches
  • readily
  • real estate
  • reality
  • Realme
  • realtor
  • recent
  • recipe
  • recommended reading
  • record
  • recreading
  • redesign
  • Redmi
  • reels
  • reface
  • reflex
  • reflex latency analyzer
  • refresh rate
  • Regional
  • regulates
  • regulating
  • regulation
  • reinfection
  • release
  • release date
  • released
  • releasedate
  • releases
  • releasing
  • relic
  • reliever
  • relocation
  • remain
  • remote
  • remote learning
  • remote vehicle setup
  • remove
  • removed
  • renewable energy
  • rental
  • repair
  • Report
  • reportedly
  • reporting
  • representation
  • reproductive health
  • reproductive justice
  • Republican
  • republicans
  • Research
  • Researchers
  • resembles
  • reset
  • resignation
  • resolution
  • Resource
  • respiratory
  • response
  • restriction
  • retail
  • Retest
  • retro
  • retro gaming
  • return
  • return of the jedi
  • retweet
  • retweet with comment
  • reunite
  • reusable
  • reusable spacecraft
  • revealed
  • reveals
  • Revel
  • reverse engineering
  • review
  • reviews
  • Revolt
  • reweaving
  • rexlex
  • rhythm
  • rian johnson
  • rianjohnson
  • richard branson
  • richard donner
  • rick snyder
  • right
  • right wing extremism
  • ring
  • riot games
  • rip
  • risks
  • rival
  • riverdale
  • rmit university
  • roadmap
  • roads
  • roav
  • roav deals
  • Robert
  • robert pattinson
  • robert reiner
  • robin wright
  • robot
  • robotic
  • robotic vacuum
  • robots
  • rocket
  • rocket lab
  • rocket league
  • rockets
  • room
  • room 104
  • rosamund pike
  • rosamundpike
  • rough
  • routes
  • royal family
  • royalfamily
  • rtx
  • rtx 30 series
  • rtx 3000
  • rtx 3070
  • rtx 3080
  • rtx 3090
  • rumor
  • rumors
  • running
  • rupert murdoch
  • rural
  • russia
  • s1
  • safety
  • sales
  • samara weaving
  • samsung
  • samsung deals
  • samsung galaxy fit2
  • samsung unpacked
  • Samsung's
  • san francisco
  • sandragon 8cx
  • Santana
  • sars cov 2
  • satechi
  • satellite
  • satellites
  • saucy nugs
  • savings
  • scam
  • scams
  • scandals
  • scanwatch
  • school
  • schools
  • sci fi
  • science
  • Scientist
  • scientists
  • scorched
  • score
  • scott pruitt
  • scream 5
  • screen
  • screen pass
  • sd-03
  • Seagate
  • sean bean
  • sean murray
  • seanan mcguire
  • season
  • section 702
  • security
  • sedan
  • seeds
  • sega
  • segway
  • segway es2
  • select
  • self-centered
  • self-driving
  • self-organizing
  • sells
  • semi-autonomous
  • Sennheiser
  • sensing
  • sensor
  • September
  • sequencer
  • sequencing
  • Serena
  • Serengeti
  • Series
  • series 3
  • services
  • Severe
  • Shade
  • Shadowlands
  • shares
  • sharing
  • shenmue
  • shenmue 3
  • shield
  • shopping
  • short-throw projector
  • shortcut
  • shortcuts
  • shows
  • shudder
  • shut up and take my money
  • siberia
  • sick days
  • side deal deals
  • sidedeals
  • sights
  • signs
  • Silicon
  • Silver
  • simply
  • simulating
  • simulation
  • singapore
  • singing
  • sinkholes
  • skin
  • skullcandy
  • skydrive
  • skyscraper
  • slack
  • sleep
  • small
  • smart
  • smart clock
  • smart glasses
  • smart home
  • smart homes
  • smart lighting
  • smart lights
  • smart lock
  • smart speakers
  • smarthome
  • smartlighting
  • smartlock
  • smartphone
  • smartphones
  • smartwatch
  • smartwatches
  • smic
  • smoker
  • smoking
  • snapdragon
  • snapdragon 732g
  • snapdragon 765
  • snapdragon 8cx
  • snapdragon 8cx gen 2
  • social distancing
  • social life
  • social media
  • social media mistakes
  • social network
  • social networking
  • sociology
  • software
  • solar
  • solo pro
  • solve
  • Songbirds
  • Sonos
  • sony
  • Sony's
  • soundbar
  • south korea
  • southern route
  • space
  • space race
  • spacecraft
  • spaceflight
  • spacelopnik
  • spaceshiptwo
  • SpaceX
  • Spain
  • sparks
  • speaker
  • speakers
  • Special
  • species
  • specifications
  • spectre x360 13
  • speed
  • spent
  • spike
  • split inbox
  • split-second
  • Splitting
  • sports
  • sports plus
  • Spotify-owned
  • spread
  • sputnik v
  • square enix
  • st patricks day
  • stadia
  • Stage
  • stanford university
  • star trek
  • star trek 4
  • star trek discovery
  • star trek the motion picture
  • star trek the motion pictureinside the art and visual effects
  • star wars
  • star wars galaxys edge
  • star wars rebels
  • star wars the high republic
  • star wars the last jedi
  • star wars the rise of skywalker
  • Starlink
  • starlink hits streaming milestone
  • starship
  • start
  • starts
  • starwars
  • state
  • states
  • stationary
  • stationary bike
  • statistics
  • steady
  • stealth 15m
  • Steam
  • steelseries
  • stephen hawking
  • steroids
  • steven spielberg
  • stick
  • stop-motion animation
  • store
  • stories
  • story
  • stranger things
  • stream
  • streaming
  • streaming video
  • streaming wars
  • strength
  • Stress
  • Strix
  • Strokes
  • Strong
  • Structural
  • Structure
  • student
  • Study
  • sturgis
  • sub-6
  • subscription codes
  • subsurface oceans
  • subterranean oceans
  • Subtypes
  • success
  • suffering
  • suicide
  • suicide prevention
  • suited
  • summit b
  • summit e
  • summit series
  • sunglasses
  • sunlight
  • sunrise movement
  • sunscreen
  • Super
  • super bomberman r
  • super bomberman r online
  • super mario
  • super mario 3d all-stars
  • super mario 3d world
  • super mario 64
  • super mario all-stars
  • super mario bros.
  • super mario bros. 35
  • super mario galaxy
  • super mario sunshine
  • super typhoons
  • superlist
  • superman and lois
  • superpowers
  • SuperTank
  • supplier
  • support
  • supposedly
  • Supra
  • Surface
  • surface duo
  • surprise
  • surprising
  • surveillance
  • susanna clarke
  • suv
  • swamp thing
  • sweden
  • Swift
  • swift 3
  • swift 5
  • swift3
  • switch
  • switch online
  • syfy
  • syndrome
  • synth
  • synthesizer
  • Synthetic
  • T-Mobile
  • T-Mobile's
  • tablet
  • tabletop games
  • tablets
  • take-two interactive
  • takes
  • taobao
  • tar
  • taser
  • tattoo
  • taxes
  • taycan
  • taycan cross turismo
  • tcl
  • tcl nxtpaper
  • TCL's
  • team joe
  • Team's
  • TeamGroup
  • tease
  • tech policy
  • technique
  • technology
  • TechRadar's
  • teenage engineering
  • Teenagers
  • telecoms
  • telemate
  • TELEVISION
  • telmate
  • Tencent
  • tencent games
  • Tenet
  • terms
  • terms of disservice
  • tesla
  • test flight
  • testbed
  • testing
  • tetris
  • texas
  • text-to-speech
  • textlies
  • thanks
  • that's
  • the 100
  • the amazon is burning at an alarming rate
  • the avengers
  • the batman
  • the best keyboards
  • the best of gizmodo
  • the best stories of the week
  • the best tech for remote learning
  • the boys
  • the descent
  • the division 2
  • the dream architects
  • the engadget podcast
  • the goonies
  • the host
  • the last campfire
  • the last of us
  • the last of us part ii
  • the magicians
  • the mandalorian
  • the matrix
  • the matrix 4
  • the multivorce
  • the new mutants
  • the premiere
  • the princess bride
  • the riddler
  • the silver arrow
  • the sims
  • the three-body problem
  • the walking dead
  • the witcher 3
  • thebuyersguide
  • thedivision2
  • theengadgetpodcast
  • themandalorian
  • theme partks
  • themorningafter
  • theory
  • Therapeutic
  • therapy
  • There
  • There's
  • These
  • thethreebodyproblem
  • they call it global warming for a reason
  • they cloned tyrone
  • things
  • think
  • third
  • this is not the future
  • thom browne
  • Thousands
  • thps
  • thq
  • thrawn
  • thrawn ascendancy chaos rising
  • threatening
  • Three
  • Throne
  • throwing
  • TicWatch
  • Tiger
  • tiger lake
  • tiktok
  • tim sweeney
  • Time's
  • timothy olyphant
  • timothy zahn
  • titan books
  • Today
  • Today's
  • toilets
  • tokyo olympics
  • tomorrow
  • tony hawk
  • tony hawk's pro skater
  • tools
  • totally
  • toyota
  • track
  • tracy deonn
  • trade
  • trade war
  • traffic
  • trailers
  • trainees
  • transfer
  • transit
  • transmission
  • transportation
  • trayford pellerin
  • tread
  • treadmill
  • treat
  • treatment
  • trees
  • trending topic
  • treyarch
  • trials
  • tricks
  • tripled
  • trivia
  • true wireless
  • true wireless earbuds
  • truestrike
  • trump
  • trump administration
  • trump rallies
  • Trump's
  • trumps america
  • tucker carlson
  • tumors
  • Tungsten
  • turing
  • turned
  • turntables
  • turtles
  • tv
  • tvs
  • tweets
  • twist
  • twitch
  • twitch sings
  • twitter
  • typhoons
  • typical
  • uber
  • Ubisoft
  • Ubisoft's
  • ufc
  • ufc 4
  • ula
  • Ulster
  • Ultra
  • ultra short throw projector
  • Ultrabooks
  • ultraportables
  • unboxing
  • Uncategorized @hi
  • Unconventional
  • uncover
  • Uncovering
  • under-display
  • understanding
  • unexpected
  • unfair
  • unfiltered
  • unintentionally
  • Unique
  • United
  • united launch alliance
  • united nations
  • unlock
  • unprecedented
  • unreal engine
  • unveils
  • upcoming
  • Update
  • upgrade
  • upper
  • us air force
  • us military
  • usda
  • user data
  • user review
  • user review roundup
  • user reviews
  • userreview
  • userreviewroundup
  • userreviews
  • users
  • Using
  • usps
  • ust
  • vacation
  • vaccine
  • Vaccines
  • vacuum
  • valentines day
  • validates
  • valve
  • vanderbilt university
  • vantrue
  • vaping
  • variations
  • vava
  • vava deals
  • vehicle
  • vehicles
  • Velour
  • Venom
  • verizon
  • version 1.7.14.0
  • vertical
  • vesa
  • vfx
  • vibert thio
  • vicarious visions
  • victoria
  • victorian police
  • videgames
  • video
  • video authenticator
  • video cards
  • video games
  • video streaming
  • videocards
  • videos
  • vinyl
  • viral videos
  • virgin galactic
  • virginia
  • Virgo
  • virtual
  • virtual reality
  • virtual showroom
  • virtual tour
  • Viruses
  • visually impaired
  • Vitamin
  • Vizio
  • vlambeer
  • vlogging
  • vod
  • voice acting
  • voice assistant
  • Volkswagen
  • volta zero
  • voting
  • voting information center
  • vr
  • vr gaming
  • vrgaming
  • vss unity
  • vulnerable
  • wakanda
  • wallops island
  • wally wingert
  • Walmart
  • walmart is coming
  • wanted pinkertons
  • wants
  • Warcraft
  • warner bros
  • Warriors
  • Wasps
  • watch
  • watch es
  • watch gs pro
  • watch it nerds
  • watch parties
  • watches
  • water
  • water resistant
  • waze
  • wearable
  • wearables
  • weather
  • weather is happening
  • web
  • web browsers
  • web tracking
  • webcams
  • weber
  • weber smokefire ex4
  • weber smokefire ex4 review
  • website
  • weed
  • weeklydeals
  • weigh
  • Weight
  • Welcome
  • wernher von braun
  • West'
  • western
  • western digital
  • western digital deals
  • whales
  • What's
  • whatever
  • WhatsApp
  • Where
  • Which
  • white house
  • white privilege
  • whole foods market
  • why is it always florida
  • widescreen
  • wifi
  • wifi 6
  • wifi smart lock
  • wifi6
  • wikipedia
  • wildfire season is year round now
  • wildfires
  • wildleaks
  • wildlife
  • william zabka
  • Williams
  • winamp skin museum
  • windows
  • windows 10
  • windows 95
  • windows on arm
  • wing
  • winner
  • winning
  • wireless
  • wireless headphones
  • wisconsin
  • wishes
  • Witcher
  • withdraws
  • withings
  • withings scanwatch
  • Wolves
  • Women
  • won't
  • wonder woman 1984
  • woodpeckers
  • Wool-like
  • WordPress
  • working
  • workout
  • workplace
  • workstation
  • World
  • world health organization
  • world's
  • worsens
  • worst
  • worth
  • writing
  • Wrong-way'
  • wynonna earp
  • x men
  • X-ray
  • x3
  • x44
  • xbox
  • xbox deals
  • xbox live gold
  • xbox series s
  • xbox series x
  • Xiaomi
  • Xiaomi's
  • Xperia
  • xperia 5 ii
  • xps 13
  • Yahoo
  • years
  • Yellowstone
  • yoda
  • yoga
  • yoson an
  • you get a laptop and you get a laptop
  • you're
  • youku
  • Young
  • your news update
  • youtube
  • youtube tv
  • yu suzuki
  • yummy
  • yves maitre
  • z
  • zack snyder
  • zenbook 13
  • zenbook flip 13
  • zenbook flip s
  • zenbook s
  • Zendure
  • Zenfone
  • zimbabwe
  • zombies
  • Zooming
  • zte
  • zuko

Advertise

Contact us

Follow Us

Recent News

Poco C3 to Feature 13-Megapixel Triple Rear Camera Setup, Up to 4GB RAM

Poco C3 to Feature 13-Megapixel Triple Rear Camera Setup, Up to 4GB RAM

October 3, 2020
Know About Gandhi jayanti 2020: etihaas, mahatv

Know About Gandhi jayanti 2020: etihaas, mahatv

October 1, 2020

जिज्ञासा ज़रूरी है इसीलिए हम आपको देंगे जानकारी जो आपकी जिज्ञासा की प्यास को बुझा देगी
© JIGYAASA.IN

No Result
View All Result
  • Home

© 2020 JIGYAASA.IN