Jigyaasa
  • Home
No Result
View All Result
Jigyaasa
  • Home
No Result
View All Result
Jigyaasa
No Result
View All Result

How to Configure k-Fold Cross-Validation

Subhanshu Singh by Subhanshu Singh
July 31, 2020
in Artificial Intelligence
0
how-to-configure-k-fold-cross-validation
0
VIEWS
Share on FacebookShare on Twitter

The k-fold cross-validation procedure is a standard method for estimating the performance of a machine learning algorithm on a dataset.

A common value for k is 10, although how do we know that this configuration is appropriate for our dataset and our algorithms?

One approach is to explore the effect of different k values on the estimate of model performance and compare this to an ideal test condition. This can help to choose an appropriate value for k.

Once a k-value is chosen, it can be used to evaluate a suite of different algorithms on the dataset and the distribution of results can be compared to an evaluation of the same algorithms using an ideal test condition to see if they are highly correlated or not. If correlated, it confirms the chosen configuration is a robust approximation for the ideal test condition.

In this tutorial, you will discover how to configure and evaluate configurations of k-fold cross-validation.

After completing this tutorial, you will know:

  • How to evaluate a machine learning algorithm using k-fold cross-validation on a dataset.
  • How to perform a sensitivity analysis of k-values for k-fold cross-validation.
  • How to calculate the correlation between a cross-validation test harness and an ideal test condition.

Let’s get started.

How to Configure k-Fold Cross-Validation

How to Configure k-Fold Cross-Validation

Photo by Patricia Farrell, some rights reserved.

Tutorial Overview

This tutorial is divided into three parts; they are:

  1. k-Fold Cross-Validation
  2. Sensitivity Analysis for k
  3. Correlation of Test Harness With Target

k-Fold Cross-Validation

It is common to evaluate machine learning models on a dataset using k-fold cross-validation.

The k-fold cross-validation procedure divides a limited dataset into k non-overlapping folds. Each of the k folds is given an opportunity to be used as a held-back test set, whilst all other folds collectively are used as a training dataset. A total of k models are fit and evaluated on the k hold-out test sets and the mean performance is reported.

For more on the k-fold cross-validation procedure, see the tutorial:

  • A Gentle Introduction to k-fold Cross-Validation

The k-fold cross-validation procedure can be implemented easily using the scikit-learn machine learning library.

First, let’s define a synthetic classification dataset that we can use as the basis of this tutorial.

The make_classification() function can be used to create a synthetic binary classification dataset. We will configure it to generate 100 samples each with 20 input features, 15 of which contribute to the target variable.

The example below creates and summarizes the dataset.

# test classification dataset

from sklearn.datasets import make_classification

# define dataset

X, y = make_classification(n_samples=100, n_features=20, n_informative=15, n_redundant=5, random_state=1)

# summarize the dataset

print(X.shape, y.shape)

Running the example creates the dataset and confirms that it contains 100 samples and 10 input variables.

The fixed seed for the pseudorandom number generator ensures that we get the same samples each time the dataset is generated.

Next, we can evaluate a model on this dataset using k-fold cross-validation.

We will evaluate a LogisticRegression model and use the KFold class to perform the cross-validation, configured to shuffle the dataset and set k=10, a popular default.

The cross_val_score() function will be used to perform the evaluation, taking the dataset and cross-validation configuration and returning a list of scores calculated for each fold.

The complete example is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

# evaluate a logistic regression model using k-fold cross-validation

from numpy import mean

from numpy import std

from sklearn.datasets import make_classification

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

# create dataset

X, y = make_classification(n_samples=100, n_features=20, n_informative=15, n_redundant=5, random_state=1)

# prepare the cross-validation procedure

cv = KFold(n_splits=10, random_state=1, shuffle=True)

# create model

model = LogisticRegression()

# evaluate model

scores = cross_val_score(model, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

# report performance

print(‘Accuracy: %.3f (%.3f)’ % (mean(scores), std(scores)))

Running the example creates the dataset, then evaluates a logistic regression model on it using 10-fold cross-validation. The mean classification accuracy on the dataset is then reported.

Your specific results may vary given the stochastic nature of the learning algorithm. Try running the example a few times.

In this case, we can see that the model achieved an estimated classification accuracy of about 85.0 percent.

Now that we are familiar with k-fold cross-validation, let’s look at how we might configure the procedure.

Sensitivity Analysis for k

The key configuration parameter for k-fold cross-validation is k that defines the number folds in which to split a given dataset.

Common values are k=3, k=5, and k=10, and by far the most popular value used in applied machine learning to evaluate models is k=10. The reason for this is studies were performed and k=10 was found to provide good trade-off of low computational cost and low bias in an estimate of model performance.

How do we know what value of k to use when evaluating models on our own dataset?

You can choose k=10, but how do you know this makes sense for your dataset?

One approach to answering this question is to perform a sensitivity analysis for different k values. That is, evaluate the performance of the same model on the same dataset with different values of k and see how they compare.

The expectation is that low values of k will result in a noisy estimate of model performance and large values of k will result in a less noisy estimate of model performance.

But noisy compared to what?

We don’t know the true performance of the model when making predictions on new/unseen data, as we don’t have access to new/unseen data. If we did, we would make use of it in the evaluation of the model.

Nevertheless, we can choose a test condition that represents an “ideal” or as-best-as-we-can-achieve “ideal” estimate of model performance.

One approach would be to train the model on all available data and estimate the performance on a separate large and representative hold-out dataset. The performance on this hold-out dataset would represent the “true” performance of the model and any cross-validation performances on the training dataset would represent an estimate of this score.

This is rarely possible as we often do not have enough data to hold some back and use it as a test set. Kaggle machine learning competitions are one exception to this, where we do have a hold-out test set, a sample of which is evaluated via submissions.

Instead, we can simulate this case using the leave-one-out cross-validation (LOOCV), a computationally expensive version of cross-validation where k=N, and N is the total number of examples in the training dataset. That is, each sample in the training set is given an example to be used alone as the test evaluation dataset. It is rarely used for large datasets as it is computationally expensive, although it can provide a good estimate of model performance given the available data.

We can then compare the mean classification accuracy for different k values to the mean classification accuracy from LOOCV on the same dataset. The difference between the scores provides a rough proxy for how well a k value approximates the ideal model evaluation test condition.

Let’s explore how to implement a sensitivity analysis of k-fold cross-validation.

First, let’s define a function to create the dataset. This allows you to change the dataset to your own if you desire.

# create the dataset

def get_dataset(n_samples=100):

X, y = make_classification(n_samples=n_samples, n_features=20, n_informative=15, n_redundant=5, random_state=1)

return X, y

Next, we can define a dataset to create the model to evaluate.

Again, this separation allows you to change the model to your own if you desire.

# retrieve the model to be evaluate

def get_model():

model = LogisticRegression()

return model

Next, you can define a function to evaluate the model on the dataset given a test condition. The test condition could be an instance of the KFold configured with a given k-value, or it could be an instance of LeaveOneOut that represents our ideal test condition.

The function returns the mean classification accuracy as well as the min and max accuracy from the folds. We can use the min and max to summarize the distribution of scores.

# evaluate the model using a given test condition

def evaluate_model(cv):

# get the dataset

X, y = get_dataset()

# get the model

model = get_model()

# evaluate the model

scores = cross_val_score(model, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

# return scores

return mean(scores), scores.min(), scores.max()

Next, we can calculate the model performance using the LOOCV procedure.

...

# calculate the ideal test condition

ideal, _, _ = evaluate_model(LeaveOneOut())

print(‘Ideal: %.3f’ % ideal)

We can then define the k values to evaluate. In this case, we will test values between 2 and 30.

...

# define folds to test

folds = range(2,31)

We can then evaluate each value in turn and store the results as we go.

...

# record mean and min/max of each set of results

means, mins, maxs = list(),list(),list()

# evaluate each k value

for k in folds:

# define the test condition

cv = KFold(n_splits=k, shuffle=True, random_state=1)

# evaluate k value

k_mean, k_min, k_max = evaluate_model(cv)

# report performance

print(‘> folds=%d, accuracy=%.3f (%.3f,%.3f)’ % (k, k_mean, k_min, k_max))

# store mean accuracy

means.append(k_mean)

# store min and max relative to the mean

mins.append(k_mean – k_min)

maxs.append(k_max – k_mean)

Finally, we can plot the results for interpretation.

...

# line plot of k mean values with min/max error bars

pyplot.errorbar(folds, means, yerr=[mins, maxs], fmt=‘o’)

# plot the ideal case in a separate color

pyplot.plot(folds, [ideal for _ in range(len(folds))], color=‘r’)

# show the plot

pyplot.show()

Tying this together, the complete example is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

# sensitivity analysis of k in k-fold cross-validation

from numpy import mean

from sklearn.datasets import make_classification

from sklearn.model_selection import LeaveOneOut

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

from matplotlib import pyplot

# create the dataset

def get_dataset(n_samples=100):

X, y = make_classification(n_samples=n_samples, n_features=20, n_informative=15, n_redundant=5, random_state=1)

return X, y

# retrieve the model to be evaluate

def get_model():

model = LogisticRegression()

return model

# evaluate the model using a given test condition

def evaluate_model(cv):

# get the dataset

X, y = get_dataset()

# get the model

model = get_model()

# evaluate the model

scores = cross_val_score(model, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

# return scores

return mean(scores), scores.min(), scores.max()

# calculate the ideal test condition

ideal, _, _ = evaluate_model(LeaveOneOut())

print(‘Ideal: %.3f’ % ideal)

# define folds to test

folds = range(2,31)

# record mean and min/max of each set of results

means, mins, maxs = list(),list(),list()

# evaluate each k value

for k in folds:

# define the test condition

cv = KFold(n_splits=k, shuffle=True, random_state=1)

# evaluate k value

k_mean, k_min, k_max = evaluate_model(cv)

# report performance

print(‘> folds=%d, accuracy=%.3f (%.3f,%.3f)’ % (k, k_mean, k_min, k_max))

# store mean accuracy

means.append(k_mean)

# store min and max relative to the mean

mins.append(k_mean – k_min)

maxs.append(k_max – k_mean)

# line plot of k mean values with min/max error bars

pyplot.errorbar(folds, means, yerr=[mins, maxs], fmt=‘o’)

# plot the ideal case in a separate color

pyplot.plot(folds, [ideal for _ in range(len(folds))], color=‘r’)

# show the plot

pyplot.show()

Running the example first reports the LOOCV, then the mean, min, and max accuracy for each k value that was evaluated.

Your specific results may vary given the stochastic nature of the learning algorithm. Try running the example a few times.

In this case, we can see that the LOOCV result was about 84 percent, slightly lower than the k=10 result of 85 percent.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Ideal: 0.840

> folds=2, accuracy=0.740 (0.700,0.780)

> folds=3, accuracy=0.749 (0.697,0.824)

> folds=4, accuracy=0.790 (0.640,0.920)

> folds=5, accuracy=0.810 (0.600,0.950)

> folds=6, accuracy=0.820 (0.688,0.941)

> folds=7, accuracy=0.799 (0.571,1.000)

> folds=8, accuracy=0.811 (0.385,0.923)

> folds=9, accuracy=0.829 (0.636,1.000)

> folds=10, accuracy=0.850 (0.600,1.000)

> folds=11, accuracy=0.829 (0.667,1.000)

> folds=12, accuracy=0.785 (0.250,1.000)

> folds=13, accuracy=0.839 (0.571,1.000)

> folds=14, accuracy=0.807 (0.429,1.000)

> folds=15, accuracy=0.821 (0.571,1.000)

> folds=16, accuracy=0.827 (0.500,1.000)

> folds=17, accuracy=0.816 (0.600,1.000)

> folds=18, accuracy=0.831 (0.600,1.000)

> folds=19, accuracy=0.826 (0.600,1.000)

> folds=20, accuracy=0.830 (0.600,1.000)

> folds=21, accuracy=0.814 (0.500,1.000)

> folds=22, accuracy=0.820 (0.500,1.000)

> folds=23, accuracy=0.802 (0.250,1.000)

> folds=24, accuracy=0.804 (0.250,1.000)

> folds=25, accuracy=0.810 (0.250,1.000)

> folds=26, accuracy=0.804 (0.250,1.000)

> folds=27, accuracy=0.818 (0.250,1.000)

> folds=28, accuracy=0.821 (0.250,1.000)

> folds=29, accuracy=0.822 (0.250,1.000)

> folds=30, accuracy=0.822 (0.333,1.000)

A line plot is created comparing the mean accuracy scores to the LOOCV result with the min and max of each result distribution indicated using error bars.

The results suggest that for this model on this dataset, most k values underestimate the performance of the model compared to the ideal case. The results suggest that perhaps k=10 alone is slightly optimistic and perhaps k=13 might be a more accurate estimate.

Line Plot of Mean Accuracy for Cross-Validation k-Values With Error Bars (Blue) vs. the Ideal Case (red)

Line Plot of Mean Accuracy for Cross-Validation k-Values With Error Bars (Blue) vs. the Ideal Case (red)

This provides a template that you can use to perform a sensitivity analysis of k values of your chosen model on your dataset against a given ideal test condition.

Correlation of Test Harness With Target

Once a test harness is chosen, another consideration is how well it matches the ideal test condition across different algorithms.

It is possible that for some algorithms and some configurations, the k-fold cross-validation will be a better approximation of the ideal test condition compared to other algorithms and algorithm configurations.

We can evaluate and report on this relationship explicitly. This can be achieved by calculating how well the k-fold cross-validation results across a range of algorithms match the evaluation of the same algorithms on the ideal test condition.

The Pearson’s correlation coefficient can be calculated between the two groups of scores to measure how closely they match. That is, do they change together in the same ways: when one algorithm looks better than another via k-fold cross-validation, does this hold on the ideal test condition?

We expect to see a strong positive correlation between the scores, such as 0.5 or higher. A low correlation suggests the need to change the k-fold cross-validation test harness to better match the ideal test condition.

First, we can define a function that will create a list of standard machine learning models to evaluate via each test harness.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

# get a list of models to evaluate

def get_models():

models = list()

models.append(LogisticRegression())

models.append(RidgeClassifier())

models.append(SGDClassifier())

models.append(PassiveAggressiveClassifier())

models.append(KNeighborsClassifier())

models.append(DecisionTreeClassifier())

models.append(ExtraTreeClassifier())

models.append(LinearSVC())

models.append(SVC())

models.append(GaussianNB())

models.append(AdaBoostClassifier())

models.append(BaggingClassifier())

models.append(RandomForestClassifier())

models.append(ExtraTreesClassifier())

models.append(GaussianProcessClassifier())

models.append(GradientBoostingClassifier())

models.append(LinearDiscriminantAnalysis())

models.append(QuadraticDiscriminantAnalysis())

return models

We will use k=10 for the chosen test harness.

We can then enumerate each model and evaluate it using 10-fold cross-validation and our ideal test condition, in this case, LOOCV.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

...

# define test conditions

ideal_cv = LeaveOneOut()

cv = KFold(n_splits=10, shuffle=True, random_state=1)

# get the list of models to consider

models = get_models()

# collect results

ideal_results, cv_results = list(), list()

# evaluate each model

for model in models:

# evaluate model using each test condition

cv_mean = evaluate_model(cv, model)

ideal_mean = evaluate_model(ideal_cv, model)

# check for invalid results

if isnan(cv_mean) or isnan(ideal_mean):

continue

# store results

cv_results.append(cv_mean)

ideal_results.append(ideal_mean)

# summarize progress

print(‘>%s: ideal=%.3f, cv=%.3f’ % (type(model).__name__, ideal_mean, cv_mean))

We can then calculate the correlation between the mean classification accuracy from the 10-fold cross-validation test harness and the LOOCV test harness.

...

# calculate the correlation between each test condition

corr, _ = pearsonr(cv_results, ideal_results)

print(‘Correlation: %.3f’ % corr)

Finally, we can create a scatter plot of the two sets of results and draw a line of best fit to visually see how well they change together.

...

# scatter plot of results

pyplot.scatter(cv_results, ideal_results)

# plot the line of best fit

coeff, bias = polyfit(cv_results, ideal_results, 1)

line = coeff * asarray(cv_results) + bias

pyplot.plot(cv_results, line, color=‘r’)

# show the plot

pyplot.show()

Tying all of this together, the complete example is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

# correlation between test harness and ideal test condition

from numpy import mean

from numpy import isnan

from numpy import asarray

from numpy import polyfit

from scipy.stats import pearsonr

from matplotlib import pyplot

from sklearn.datasets import make_classification

from sklearn.model_selection import KFold

from sklearn.model_selection import LeaveOneOut

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.linear_model import RidgeClassifier

from sklearn.linear_model import SGDClassifier

from sklearn.linear_model import PassiveAggressiveClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.tree import ExtraTreeClassifier

from sklearn.svm import LinearSVC

from sklearn.svm import SVC

from sklearn.naive_bayes import GaussianNB

from sklearn.ensemble import AdaBoostClassifier

from sklearn.ensemble import BaggingClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.gaussian_process import GaussianProcessClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

# create the dataset

def get_dataset(n_samples=100):

X, y = make_classification(n_samples=n_samples, n_features=20, n_informative=15, n_redundant=5, random_state=1)

return X, y

# get a list of models to evaluate

def get_models():

models = list()

models.append(LogisticRegression())

models.append(RidgeClassifier())

models.append(SGDClassifier())

models.append(PassiveAggressiveClassifier())

models.append(KNeighborsClassifier())

models.append(DecisionTreeClassifier())

models.append(ExtraTreeClassifier())

models.append(LinearSVC())

models.append(SVC())

models.append(GaussianNB())

models.append(AdaBoostClassifier())

models.append(BaggingClassifier())

models.append(RandomForestClassifier())

models.append(ExtraTreesClassifier())

models.append(GaussianProcessClassifier())

models.append(GradientBoostingClassifier())

models.append(LinearDiscriminantAnalysis())

models.append(QuadraticDiscriminantAnalysis())

return models

# evaluate the model using a given test condition

def evaluate_model(cv, model):

# get the dataset

X, y = get_dataset()

# evaluate the model

scores = cross_val_score(model, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

# return scores

return mean(scores)

# define test conditions

ideal_cv = LeaveOneOut()

cv = KFold(n_splits=10, shuffle=True, random_state=1)

# get the list of models to consider

models = get_models()

# collect results

ideal_results, cv_results = list(), list()

# evaluate each model

for model in models:

# evaluate model using each test condition

cv_mean = evaluate_model(cv, model)

ideal_mean = evaluate_model(ideal_cv, model)

# check for invalid results

if isnan(cv_mean) or isnan(ideal_mean):

continue

# store results

cv_results.append(cv_mean)

ideal_results.append(ideal_mean)

# summarize progress

print(‘>%s: ideal=%.3f, cv=%.3f’ % (type(model).__name__, ideal_mean, cv_mean))

# calculate the correlation between each test condition

corr, _ = pearsonr(cv_results, ideal_results)

print(‘Correlation: %.3f’ % corr)

# scatter plot of results

pyplot.scatter(cv_results, ideal_results)

# plot the line of best fit

coeff, bias = polyfit(cv_results, ideal_results, 1)

line = coeff * asarray(cv_results) + bias

pyplot.plot(cv_results, line, color=‘r’)

# label the plot

pyplot.title(’10-fold CV vs LOOCV Mean Accuracy’)

pyplot.xlabel(‘Mean Accuracy (10-fold CV)’)

pyplot.ylabel(‘Mean Accuracy (LOOCV)’)

# show the plot

pyplot.show()

Running the example reports the mean classification accuracy for each algorithm calculated via each test harness.

Your specific results may vary given the stochastic nature of the learning algorithm. Try running the example a few times.

You may see some warnings that you can safely ignore, such as:

We can see that for some algorithms, the test harness over-estimates the accuracy compared to LOOCV, and in other cases, it under-estimates the accuracy. This is to be expected.

At the end of the run, we can see that the correlation between the two sets of results is reported. In this case, we can see that a correlation of 0.746 is reported, which is a good strong positive correlation. The results suggest that 10-fold cross-validation does provide a good approximation for the LOOCV test harness on this dataset as calculated with 18 popular machine learning algorithms.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

>LogisticRegression: ideal=0.840, cv=0.850

>RidgeClassifier: ideal=0.830, cv=0.830

>SGDClassifier: ideal=0.730, cv=0.790

>PassiveAggressiveClassifier: ideal=0.780, cv=0.760

>KNeighborsClassifier: ideal=0.760, cv=0.770

>DecisionTreeClassifier: ideal=0.690, cv=0.630

>ExtraTreeClassifier: ideal=0.710, cv=0.620

>LinearSVC: ideal=0.850, cv=0.830

>SVC: ideal=0.900, cv=0.880

>GaussianNB: ideal=0.730, cv=0.720

>AdaBoostClassifier: ideal=0.740, cv=0.740

>BaggingClassifier: ideal=0.770, cv=0.740

>RandomForestClassifier: ideal=0.810, cv=0.790

>ExtraTreesClassifier: ideal=0.820, cv=0.820

>GaussianProcessClassifier: ideal=0.790, cv=0.760

>GradientBoostingClassifier: ideal=0.820, cv=0.820

>LinearDiscriminantAnalysis: ideal=0.830, cv=0.830

>QuadraticDiscriminantAnalysis: ideal=0.610, cv=0.760

Correlation: 0.746

Finally, a scatter plot is created comparing the distribution of mean accuracy scores for the test harness (x-axis) vs. the accuracy scores via LOOCV (y-axis).

A red line of best fit is drawn through the results showing the strong linear correlation.

Scatter Plot of Cross-Validation vs. Ideal Test Mean Accuracy With Line of Best Fit

Scatter Plot of Cross-Validation vs. Ideal Test Mean Accuracy With Line of Best Fit

This provides a harness for comparing your chosen test harness to an ideal test condition on your own dataset.

Further Reading

This section provides more resources on the topic if you are looking to go deeper.

Tutorials

  • A Gentle Introduction to k-fold Cross-Validation
  • How to Fix k-Fold Cross-Validation for Imbalanced Classification

APIs

  • sklearn.model_selection.KFold API.
  • sklearn.model_selection.LeaveOneOut API.
  • sklearn.model_selection.cross_val_score API.

Articles

  • Cross-validation (statistics), Wikipedia.

Summary

In this tutorial, you discovered how to configure and evaluate configurations of k-fold cross-validation.

Specifically, you learned:

  • How to evaluate a machine learning algorithm using k-fold cross-validation on a dataset.
  • How to perform a sensitivity analysis of k-values for k-fold cross-validation.
  • How to calculate the correlation between a cross-validation test harness and an ideal test condition.

Do you have any questions?


Ask your questions in the comments below and I will do my best to answer.

Discover Fast Machine Learning in Python!

Master Machine Learning With Python

Develop Your Own Models in Minutes

…with just a few lines of scikit-learn code

Learn how in my new Ebook:


Machine Learning Mastery With Python

Covers self-study tutorials and end-to-end projects like:


Loading data, visualization, modeling, tuning, and much more…

Finally Bring Machine Learning To


Your Own Projects

Skip the Academics. Just Results.

See What’s Inside

Tags: aiartificial intelligencemachine learningPython Machine Learning
Previous Post

AI Has Track Record in Fraud Prevention for Credit Card Issuers

Next Post

New tool automatically turns math into pictures

Next Post

New tool automatically turns math into pictures

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Category

  • -core
  • -inch
  • -year-old
  • 'anti-procrastination'
  • 'bang'
  • 'gold'
  • 'plug
  • 'Trending'
  • 0
  • 000 mah battery
  • 1
  • 10 billion dollars
  • 100gb
  • 11th gen
  • 1mii
  • 1mii deals
  • 2
  • 2-in-1
  • 2020 election
  • 2020 elections
  • 2020 presidential election
  • 20th century fox
  • 20th century studios
  • 2d
  • 2in1
  • 3.5 ghz
  • 35th
  • 360hz
  • 3d printing
  • 3dprinting
  • 4-series
  • 4k
  • 50 states of fright
  • 5g
  • 64-megapixel camera
  • 65
  • 8bitdo
  • 8k
  • a dark path
  • a10
  • a20
  • a20 gen 2
  • a40
  • a40tr
  • a50 wireless
  • abide
  • abortion
  • absentee ballots
  • Academy
  • acadiana mall
  • accelerated
  • accept sender
  • accepting
  • accessibility
  • accessibility center of excellence
  • acer
  • acer deals
  • acer spin 7
  • acerspin7
  • Acorn
  • action camera
  • action figures
  • active noise cancellation
  • Activision
  • activision blizzard
  • Activists
  • actually
  • ada
  • adam savage
  • addicted
  • administration
  • adobe
  • adopt
  • adrian smith
  • ads
  • adult swim
  • advanced optimus
  • advertising
  • affect
  • affordable
  • African
  • After
  • after math
  • aftermath
  • agriculture
  • ai
  • air carrier
  • air pollution
  • air quality
  • air travel
  • aircraft
  • AirDrop
  • airline
  • airplanes
  • airpods pro
  • airports
  • Airtel
  • ajit pai
  • alex winter
  • alexa
  • alexa for residential
  • alibaba
  • alice braga
  • alien addiction
  • aliens
  • Alienware
  • alienware 25
  • alienware 27
  • alienware 38
  • alienware deals
  • alipay
  • all up
  • all-electric
  • alphabay
  • alphabet
  • alter
  • Amateur
  • amazfit
  • amazing
  • amazon
  • amazon alexa
  • amazon deals
  • amazon echo
  • amazon flex
  • amazon pay
  • amazon prime
  • amazon prime air
  • amazon prime video
  • amazon.subtember
  • Amazon's
  • amazonalexa
  • amazonpay
  • Ambient
  • amd
  • AMD's
  • American
  • american horror story
  • Amnesia
  • Among
  • amongst
  • ampere
  • analysis
  • anarchists
  • anc
  • Ancient
  • andrea riseborough
  • andrea stewart
  • android
  • android 10
  • android auto
  • android automotive
  • android tablet
  • Android's
  • android10
  • androidtablet
  • animal crossing
  • animation
  • anime
  • anker
  • anker deals
  • annihilation
  • anniversary
  • announcements
  • announces
  • anode
  • Another
  • ant man 3
  • antenna
  • anthony carrigan
  • anti-cheat
  • anti-tracking
  • antibiotics
  • antibodies
  • antibody
  • anticipated
  • antifa
  • antitrust
  • Antiviral
  • antlers
  • anwr
  • anxiety
  • anxious
  • anya taylor joy
  • anyone
  • Aorus
  • apartments
  • apollo 11
  • apologizes
  • app
  • app store
  • apparel
  • appeals
  • apple
  • apple arcade
  • apple arm
  • apple deals
  • apple health
  • apple rumors
  • apple safari
  • apple silicon
  • apple store
  • apple tv
  • apple vs epic
  • apple watch
  • apple watch series 3
  • Apple's
  • application
  • approaching
  • approximately
  • apps
  • ar
  • Arcade
  • arcade stick
  • archives
  • arctic
  • arctic national wildlife refuge
  • area51m
  • argument
  • arm
  • arnold schwarzenneger
  • art gallery
  • artemis mission
  • Artificial Intelligence
  • arturia
  • asobo studio
  • asphalt
  • Assassin's
  • astro
  • astro gaming
  • Astro's
  • astrogaming
  • Astronomers
  • astronomy
  • Astrophysics
  • asus rog strix scar g15
  • asus rog strix scar g15 review
  • Asus'
  • at home fitness
  • at&t
  • atomic
  • attach
  • Attackers
  • Attacking
  • attempts
  • attorney general
  • auction
  • audible
  • audio
  • audiobooks
  • augmented reality
  • augmented reality glasses
  • august
  • august wifi smart lock
  • aukey
  • aukey deals
  • Aurora
  • australia
  • Australia's
  • Australian
  • australian police
  • Authenticator
  • Authorities
  • authors
  • autofocus
  • automation
  • Autonomous
  • autonomous vehicle
  • Autophagy
  • autopilot
  • autoplay
  • av
  • available
  • avatar the last airbender
  • Avengers
  • aviation
  • ayo edibiri
  • azula
  • babies
  • baby yoda
  • backhaul
  • backwards compatibility
  • bacteria
  • balloon
  • ban
  • barrierfree
  • bass
  • batman
  • batman the animated series
  • batmobile
  • batteries
  • battery
  • Battery-free
  • battle
  • battle royale
  • bay area
  • be prepared
  • Beating
  • beats
  • beats deals
  • beautiful
  • beauty
  • bedding
  • bedroom
  • beer
  • behavior
  • behind the scenes
  • Being
  • Belgian
  • believed
  • Bering
  • bering sea
  • best buy deals
  • best of gizmodo
  • beta
  • bethesda
  • bh deals
  • bh photo deals
  • bicycle
  • biden
  • biden-harris
  • big boys
  • big mouth
  • big oil
  • bigger
  • biggest
  • bike
  • bill and ted face the music
  • bill barr
  • bill sienkiewicz
  • billion
  • billy crystal
  • biocontainment
  • biodiversity
  • biohackers
  • biohacking
  • biological
  • bird box
  • Birds
  • bitcoin
  • Black
  • black christmas
  • black hole
  • black lives matter
  • black panther
  • black widow
  • Blade
  • blast
  • blink
  • blink indoor
  • blink outdoor
  • block
  • blocks
  • blogging
  • Blood
  • blood-clotting
  • blu de barrio
  • blu hunt
  • Blu-ray
  • bluetooth
  • bluetooth headphones
  • bluetooth speaker
  • bluetooth speakers
  • bmi
  • board games
  • boat parade
  • boats
  • bob mcleod
  • Bobble
  • bolsonaro
  • bomberman
  • boneless chicken wings
  • book review
  • books
  • bookshelf injection
  • boosts
  • bounce music
  • box office
  • boxes
  • boycott
  • Boyega
  • braille
  • brain
  • brain computer interface
  • brain computer interfaces
  • brain-machine interface
  • Brainstem
  • brand-new
  • branding
  • brandon cronenberg
  • brazil
  • breakdown
  • breaks
  • breast
  • brigette lundy paine
  • brings
  • broadband
  • broadcast
  • brookings institution press
  • brooklyn
  • browser
  • budget
  • budget laptops
  • bug
  • bug fixes
  • bugs
  • build
  • bulk collection
  • bulk data collection
  • bullshit resistance school
  • burned
  • burning
  • burrowing
  • business
  • business laptops
  • butterfly
  • buyers guide
  • bytedance
  • cadmium
  • cake
  • california
  • california wildfires
  • call of duty
  • call of duty black ops cold war
  • call of duty league
  • call of duty: warzone
  • called
  • callofduty
  • callofdutyblackopscoldwar
  • callofdutyleague
  • Calls
  • calltoaction
  • Cambrian
  • camera
  • cameras
  • campaign
  • campaign signs
  • Can't
  • cancer
  • cancer alley
  • canine
  • Canon
  • captain america
  • captions
  • capture
  • Capturing
  • carbon
  • carcinogens
  • cars
  • cartivator
  • cary elwes
  • cases
  • cassandra clare
  • catnap
  • cbs
  • cbs all access
  • cd projekt red
  • cdc
  • cdl
  • cdpr
  • celebrates
  • Cells
  • Celtics
  • censorship
  • century
  • centurylink
  • chadwick boseman
  • chair
  • chairs
  • chamois
  • Champion
  • Championship
  • chance
  • Change
  • changes
  • channel zero
  • charging stations
  • charity
  • charlie heaton
  • cheap
  • cheaper
  • cheapest
  • cheating
  • Check
  • checked
  • cher wang
  • chest
  • chicago
  • chicken wings
  • Children
  • childrens books
  • childs play
  • china
  • Chinese
  • chips
  • chipset
  • choir
  • Cholesterol
  • chris claremont
  • chris matheson
  • christmas
  • christopher abbott
  • christopher nolan
  • chrome
  • Chromebooks
  • chucky
  • CineBeam
  • citadel
  • cities
  • city council meeting
  • civil liberties
  • Clarifying
  • class
  • classes
  • Classic
  • clean
  • Cleaning
  • clients
  • Climate
  • climate change
  • climate policy
  • clint barton
  • Clippers
  • clothing
  • cloud
  • cloud computing
  • cloud storage
  • Cloudflare
  • club pro+ tws
  • clusterfucks
  • coastal communities
  • Coaxing
  • cobra jet
  • cobra kai
  • cod
  • coffee
  • collaborative
  • college sports
  • Color
  • colorado
  • colors
  • comcast
  • Comey
  • comics
  • comixology
  • commerce
  • commerce department
  • common
  • commutes
  • company
  • competition
  • complaint
  • completely
  • complimentary
  • compound
  • Comprehensive
  • computational
  • computer
  • computer building
  • computers
  • concept art
  • concerning
  • confirmed
  • confirms
  • Connacht
  • connected home
  • connectedhome
  • consciousness
  • conservation
  • Conserve
  • conspiracies
  • conspirators
  • Constant
  • construct
  • Consume
  • consumer tech
  • contact tracing
  • contaminated
  • contamination
  • content moderation
  • continuous
  • contract
  • contractor
  • contractors
  • contracts
  • control
  • controller
  • convert
  • convertible
  • cooking
  • cops
  • cord cutters
  • cordless
  • coronavirus
  • corsair
  • cortisone
  • cosplay
  • costs
  • Could
  • countless
  • courts
  • covertly
  • covid 19
  • covid 19 reopening
  • COVID-
  • cpu
  • cpus
  • created
  • Creativity
  • Creed
  • creepypasta
  • crime
  • criteria
  • critical race theory
  • Croatia
  • cross-site tracking
  • crossover
  • crowdfunding
  • crunchyroll
  • crusher evo
  • Crysis
  • crystal dynamics
  • current
  • cx 400bt
  • CyberGhost
  • Cyberpunk
  • cybersecurity
  • cytokine
  • dangerous
  • daniel prude
  • dark shadows
  • dark web
  • darling
  • darpa
  • das
  • data
  • data portability
  • data privacy
  • data security
  • data transfer project
  • dating
  • david benioff
  • david polfeldt
  • davidbenioff
  • Daylight
  • daylight saving time
  • db weiss
  • dbweiss
  • dc
  • dc comics
  • dc fandome
  • ddos
  • ddos attacks
  • deadly
  • deals
  • dean parisot
  • death
  • debunks
  • debuts
  • Decades-old
  • Deciphering
  • decisions
  • declares
  • deep learning
  • deepfake
  • deepfakes
  • deepmind
  • DeepMind's
  • defending democracy program
  • deficiency
  • deforestation
  • del rey
  • delay
  • delays
  • deletes
  • deliveries
  • delivery
  • dell
  • dell deals
  • demanding
  • democratic party
  • demonstrate
  • demonstrates
  • Demonstrating
  • denim
  • Department
  • department of commerce
  • department of defense
  • Dependence
  • Depot
  • Depression
  • deron j powell
  • Descent
  • describes
  • design
  • designation
  • designers
  • details
  • detecting
  • detection
  • determine
  • dev patel
  • develop
  • developers
  • development
  • developmental
  • device
  • devices
  • dexamethasone
  • diabetes
  • Diabetes-in-a-dish
  • didn't
  • diesel
  • diets
  • differing
  • digital
  • digital cameras
  • digital diversions
  • Digital's
  • Dimensity
  • dinosaur
  • dipayan ghosh
  • direct
  • disabilities
  • disasters
  • Discord
  • discount
  • discover
  • discovered
  • Discovering
  • discovers
  • discovery
  • disenchantment
  • disney
  • disney plus
  • disney plus hotstar
  • disneyplus
  • display
  • displayhdr 600
  • Disrespect
  • dissociation
  • distance learning
  • ditch
  • Division
  • diy
  • dji
  • Djokovic
  • dlc
  • dlss
  • dna
  • do all the letters of the alphabet next you cowards
  • docs
  • dod
  • Dodder
  • doesn't
  • dogs
  • doing
  • doj
  • Dollars
  • dolphins
  • don mancini
  • don't
  • donald trump
  • donation
  • donnie yen
  • doom
  • doom eternal
  • doom ii
  • doometernal
  • doorbell
  • doorbell cams
  • doorbells
  • dorm
  • download
  • dragoncon
  • dragster
  • dramatically
  • dream edition
  • Dreamcast
  • drivers
  • driving
  • drone
  • drone delivery
  • drones
  • dropbox
  • drug-resistant
  • drugs
  • dryer
  • dual-screen
  • dune
  • dungeons and dragons
  • duo evo plus
  • Dynabook
  • dynamics
  • Dyson
  • dystopia
  • e-commerce
  • e-ink
  • e-mail
  • ea
  • earbuds
  • earlier
  • Earliest
  • Early
  • earth league international
  • earth observation
  • Earth's
  • easter
  • easter eggs
  • ecg
  • echo auto
  • echo buds
  • echoauto
  • ecofascism
  • economy
  • ed solomon
  • edgar wright
  • edge
  • Edinburgh
  • Edison
  • edison software
  • Edition
  • education
  • edward snowden
  • Effective
  • Elderly
  • election
  • election 2020
  • elections
  • electric
  • electric car
  • electric scooters
  • electric truck
  • electric vehicle
  • electrical
  • electrolyte
  • electron
  • electronic
  • electronic arts
  • electronic skin
  • elephant
  • elephants
  • elon musk
  • emails
  • embedded
  • Emergency
  • emissions
  • enables
  • enc
  • ending
  • endurance peak 2
  • endurance peak ii
  • energy
  • engadget podcast
  • engadgetdeals
  • engadgetpodcast
  • engadgetupscaled
  • Engineers
  • England
  • enhance
  • Enjoy
  • entertainment
  • Entry-level
  • environment
  • environmental protection agency
  • eoin colfer
  • epa
  • epic
  • epic games
  • epic vs apple
  • Epic’s
  • epicgames
  • episode
  • equipped
  • Erangel
  • eshop
  • espionage
  • esports
  • esportssg
  • establish
  • Estrogen
  • eta
  • Europe's
  • European
  • eurorack
  • euthanasia
  • euv
  • ev
  • Every
  • evictions
  • evidence
  • evolution
  • examines
  • excellent
  • exclusive
  • exercise
  • exist
  • expanded universe
  • expands
  • expensive
  • experience accessibility team
  • Experimental
  • explains
  • explorer project
  • export
  • exposure
  • exposure notification
  • extension
  • extinction
  • extreme e
  • extreme ultraviolet
  • extremee
  • exxon
  • exxonmobil
  • faa
  • face masks
  • face shields
  • facebook
  • facebook live
  • facebook wrote a press release
  • Facebook's
  • facilities
  • factors
  • failure
  • Failures
  • fainting
  • fake
  • fake events
  • fake news
  • fakes
  • falcon 9
  • fall 2020
  • fall guys
  • families
  • fascism
  • fast
  • fastest
  • Fastly
  • FAU-G
  • fbi
  • fcc
  • fda
  • FDA's
  • feature
  • federal communications commission
  • federalcommunicationscommission
  • fediverse
  • fedot tumusov
  • Felix
  • Females
  • femtech
  • fertility tech
  • fibre
  • Fidelio
  • Fidelity
  • fields
  • Figuring
  • film
  • finally
  • finally multicolor hue lightstrips
  • Finding
  • finds
  • Finest
  • fingerprint reader
  • fire tv
  • first
  • first amendment
  • fisa
  • fitbit
  • fitbit charge 4
  • fitness
  • fitness bands
  • fitness gear
  • fitness trackers
  • Fitter
  • five eyes
  • flash
  • flaunts
  • flexible
  • flexible display
  • Flight
  • flight simulator 2020
  • flint
  • flood
  • Floppy'
  • florida
  • flowering
  • flying car
  • flying taxis
  • fold 2
  • foldable
  • foldable phone
  • foldables
  • folding
  • Following
  • food
  • food justice
  • food security
  • Food-web
  • football
  • footwear
  • forces
  • forcibly
  • ford
  • fordpass
  • forecast
  • foreign
  • forests
  • Forget
  • fortnite
  • Fortnite's
  • Forty-Year-Old
  • Forward-thinking
  • forwarding limit
  • Fossil
  • fossils
  • found
  • fountain pens
  • fox news
  • fox soccer plus
  • France
  • fraud
  • free
  • free comics
  • free speech
  • free-to-play
  • freshwater
  • Friday
  • frontier
  • fuck fossil fuels
  • Fujifilm
  • full frame cameras
  • full-frame
  • Functions
  • Fungi
  • future
  • g-sync
  • g-sync ultimate
  • g9
  • gadgetry
  • gadgets
  • Galaxy
  • galaxy a42 5g
  • galaxy book flex
  • galaxy book flex 5g
  • galaxy buds plus
  • galaxy fit
  • galaxy fit 2
  • galaxy fold
  • galaxy s20
  • galaxy s20 fan edition
  • galaxy s20 ultra
  • galaxy tab a7
  • galaxy watch 3
  • galaxy z fold 2
  • galaxy z fold 2 5g
  • galaxy z fold2
  • galaxybookflex
  • galaxybookflex5g
  • gallery
  • game & watch
  • game boy
  • game of thrones
  • game-breaking
  • gameboy
  • gameofthrones
  • Gamers
  • games
  • Gamifying
  • gaming
  • gaming desktops
  • gaming gear
  • gaming laptop
  • gaming laptops
  • gaming monitor
  • gaming shelf
  • gas pump
  • gas station
  • gaspump
  • gasstation
  • gear
  • geforce
  • geforce rtx
  • geforce rtx 2060
  • geforce rtx 3080
  • geforcertx3080
  • gene kozicki
  • generous
  • Genes
  • Genetic
  • genetics
  • Genome
  • Genomic
  • Germany
  • Germany's
  • getting
  • getting out
  • giancarlo esposito
  • Giant
  • gig economy
  • gig workers
  • gizmos
  • glaciers
  • glitch
  • global tel link
  • Globalization
  • Gmail
  • go vacation
  • godzilla vs kong
  • gofundme
  • goltv
  • gong li
  • google
  • google ad policy
  • google ads
  • google assistant
  • google assistant snapshot
  • google chrome
  • google docs
  • google drive
  • google images
  • google kids space
  • google magenta
  • google maps
  • google play
  • google podcasts
  • Google's
  • googlekidsspace
  • gopro
  • gorilla glass
  • gotten
  • gpu
  • gpus
  • Graduate
  • Grand
  • grand central publishing
  • graphic neural network
  • graphically-impressive
  • graphics
  • graphics card
  • graphics cards
  • gravitational wave
  • Gravity
  • gravity waves
  • green drone
  • grills
  • groceries
  • growth
  • guidance
  • guidelines
  • guides
  • Guilt
  • Gulls
  • gwichin
  • hackers
  • hacking
  • hairdye
  • halloween
  • Handgrip
  • handing
  • handle
  • happens
  • happier
  • haptics
  • hard truths
  • harder
  • hardware
  • harvard
  • harvard university
  • harvarduniversity
  • hashes
  • Hastings
  • have your cake and eat it too
  • hawc
  • hawk rev vampire slayers
  • hawkeye
  • hbo
  • hbo max
  • hdr10+
  • headache
  • headed
  • headphones
  • headpohones
  • headset
  • headsets
  • health
  • Hearing
  • heart
  • heat wave
  • heat-free
  • Heavy
  • Hedge
  • heliophysics
  • hell to the no
  • hellfeed
  • hello games
  • Helminth
  • Helping
  • henry zaga
  • hepa
  • Here's
  • herman cain
  • heroes
  • hey email app
  • higher
  • highfire
  • hillary clinton
  • hints
  • hisense
  • history
  • hitting the books
  • hittingthebooks
  • holiday
  • holidays
  • home
  • home fitness
  • home schooling
  • home security
  • home theater
  • homepage
  • homepod
  • homesecurity
  • homework gap
  • honeybees
  • honeysuckle
  • honor
  • Honor's
  • horror
  • horsepower
  • Hostgator
  • hosting
  • hosts
  • hot toys
  • Hotspots'
  • hotstar
  • House
  • households
  • hp
  • hp deals
  • htc
  • Huawei
  • Hubble
  • hue play gradient
  • hugo weaving
  • human
  • Hunter
  • hunters
  • hurricane katrina
  • hurricane laura
  • hurricane season
  • hybrid
  • hypersonic
  • hypersonic missiles
  • hypertension
  • hyperx
  • Hyrule
  • i miss midi music
  • ian alexander
  • iap
  • ice ice maybe
  • ice on thin ice
  • Iceland
  • icloud
  • id software
  • id.4
  • ideas
  • Identification
  • identified
  • identify
  • idw
  • ifa
  • ifa 2020
  • ifa2020
  • ihome
  • ihome deals
  • imac
  • images
  • imitate
  • immunity
  • immuno-acceptance
  • immunotherapy
  • impacts
  • important
  • improved
  • Improving
  • in-app purchases
  • includes
  • income
  • incorrect
  • increase
  • increased
  • India
  • Indian
  • indie
  • individuals
  • indoor
  • inexpensive
  • Infants
  • infection
  • infections
  • infinity ward
  • Inflammation
  • influencer
  • influencers
  • Informing
  • informs
  • infotainment
  • Ingenious
  • initiation
  • injunction
  • Inkjet
  • Insect
  • Insight
  • Insights
  • insta360
  • insta360 one r
  • Instagram
  • instagram reels
  • instagram stories
  • installation
  • Instant
  • instant pot
  • instant pot smart wifi
  • instruments
  • insulin
  • integrated graphics
  • intel
  • intel core i9
  • intel deals
  • intel evo
  • intel xe graphics
  • intelevo
  • interact
  • interior
  • intermediate-mass black hole
  • intermittent computing
  • international
  • internet
  • internet archive
  • internet balloons
  • internet culture
  • internet research agency
  • interventions
  • interview
  • introduce
  • introduces
  • introducing
  • intrusive
  • invest
  • Investigational
  • investment
  • invests
  • invoice
  • ios
  • ios 13
  • ios 13.7
  • ios 14
  • ios13
  • ios14
  • iot
  • ip54
  • ipad
  • ipad air
  • ipad os 14
  • ipados14
  • iPhone
  • ipod
  • Islanders
  • isotope
  • israel
  • Italian
  • italy
  • items
  • its business time
  • japan
  • jason scott lee
  • jaxjox
  • jbl
  • jbl clip 4
  • jbl go 3
  • jbl partybox 310
  • jbl partybox on-the-go
  • jbl xtreme 3
  • JBL's
  • jeans
  • jedi
  • jeff bezos
  • jeff bond
  • jennifer jason leigh
  • jenny slate
  • jet li
  • jetpacks
  • jim butcher
  • JioFiber
  • jj abrams
  • joe biden
  • johnson johnson
  • jon favreau
  • jonathan majors
  • jordan eldredge
  • jordan peele
  • josh boone
  • josh guillory
  • journalism
  • juicer
  • july 4th
  • Jumping'
  • jumpstarts
  • jurassic world dominion
  • jurnee smollett
  • just transition
  • Justice
  • juul
  • jw nijman
  • jw rinzler
  • kamala harris
  • Karaoke
  • karate kid
  • kate bishop
  • kate bush
  • keanu reeves
  • Keeping
  • kenosha
  • kevin conway
  • keyboards
  • keystep
  • keystep pro
  • kick stage
  • Kidneys
  • kids
  • killer
  • king of sweden
  • kinja deals
  • konami
  • koofr
  • kotaku core
  • kotakucore
  • lab-grown
  • Labor
  • lafayette police chief scott morgan
  • laika
  • Lakers
  • lana wachowski
  • landlords
  • laptop
  • laptops
  • large attachments
  • largest
  • laser
  • laser tv
  • latest
  • launch
  • launch complex 2
  • launched
  • launches
  • laura ingraham
  • laurencefishburne
  • lawsuit
  • lawsuits
  • layout
  • leader
  • leading
  • leading-edge
  • League
  • league of legends
  • league of legends championship series
  • leak
  • leakages
  • Leaked
  • leaks
  • leaky buckets
  • learn
  • Legends
  • legion
  • legion slim 7i
  • Leinster
  • Lemonade
  • lenovo
  • lenovo legion 7
  • lenovo legion slim 7i
  • lenovo smart clock
  • lenovo smart clock essential
  • lenovo tab m10 hd gen 2
  • lenovo tab p11 pro
  • lenovo yoga
  • lenovo yoga 9i
  • leopard
  • lessen
  • letting
  • lev grossman
  • level
  • lewis hamilton
  • lg
  • lg deals
  • lg wing
  • lgbtq
  • license
  • licensing
  • lidar
  • lifestyle
  • light
  • Lightning
  • lightsabers
  • lightstrips
  • lightweight
  • ligo
  • linked
  • Links
  • Linux
  • lite
  • lithography
  • Little
  • liu cixin
  • liu yifei
  • liucixin
  • live
  • live sports
  • livestream
  • livestreaming
  • lo-fi
  • lo-fi player
  • local news
  • Locating
  • location
  • lockhart
  • lockheed martin
  • Loggerhead
  • logitech
  • logo
  • longread
  • looks
  • loon
  • loses
  • louisiana
  • lovecraft country
  • lovecraft country recaps
  • low-cost
  • Lowe's
  • lower ninth ward
  • lpddr5
  • lsc
  • lucasfilm
  • Lucid
  • lucid air
  • lucid motors
  • LucidLink
  • lucifer
  • Lumix
  • lutron
  • m night shyamalan
  • macbook air
  • macbook pro
  • mach 5
  • mach-e
  • machine learning
  • magenta
  • Magenta's
  • magicbook pro 16
  • mail
  • mail in ballots
  • mail-in voting
  • Mail's
  • maintain
  • maisie williams
  • makes
  • Making
  • malaria
  • males
  • Managing
  • Mandalorian
  • Mandalorian's
  • mandy patinkin
  • manipulated media
  • map
  • mapping
  • marijuana
  • marine
  • Mario
  • mario kart
  • mario kart live
  • mario kart live home circuit
  • mark zuckerberg
  • market
  • Marketing
  • martial arts
  • marvel
  • marvel cinematic universe
  • marvel comics
  • marvel studios
  • Marvel's
  • marvelentertainment
  • marvels avengers
  • masks
  • massive entertainment
  • massiveentertainment
  • mastodon
  • mastodons
  • MatePad
  • material
  • mathematical
  • Matric
  • matt ruff
  • matter
  • matterport
  • mattress
  • mattresses
  • mauritius
  • max-q
  • meat
  • mechanical
  • media
  • MediaTek
  • mediatonic
  • medicine
  • mega city one
  • mega-shark
  • meghan markle
  • meghanmarkle
  • meh deals
  • members
  • memes
  • memory
  • mental health
  • mentality
  • mergers and acquistions
  • messages
  • messenger
  • metadata
  • metal gear solid
  • Meteorite
  • method
  • metroid
  • miami
  • michael k williams
  • Microbes
  • microfiber
  • Microgel
  • Microsoft
  • microsoft edge
  • Microsoft's
  • mid-range
  • Middle
  • midi
  • midi controller
  • migrations
  • miir deals
  • military technology
  • militias
  • Millions
  • Minecraft–
  • Miniature
  • minimize
  • mining
  • mirrorless
  • mirrorless cameras
  • misha green
  • misinformation
  • mistakes
  • mite-y
  • mixed reality
  • mixes
  • mobil
  • mobile
  • Mobile's
  • model
  • model 3
  • model s
  • model x
  • model y
  • moderna
  • modification
  • mods
  • modular synthesizer
  • mojang
  • molecular
  • Molecule
  • monique candelaria
  • monitor
  • Monitoring
  • Monsters
  • months
  • moon
  • morally bankrupt exploitative shitbags
  • more oled laptops please
  • mortality
  • motherandroid
  • Motorola
  • motorola one
  • motorola one 5g
  • Motorola's
  • Motors
  • mouse
  • moveaudio s200
  • movie
  • movie theaters
  • movies
  • movies anywhere
  • mozilla firefox
  • mq direct deals
  • mr carey
  • msi
  • msi summit
  • msi summit series
  • MSI's
  • mulan
  • multiverses
  • Munster
  • Murray
  • museum
  • museums
  • music
  • music making
  • music quiz
  • musical instruments
  • Musk's
  • mustang
  • mustang mach-e
  • mutations
  • myneato
  • mystery
  • mystery jetpack
  • myths
  • naked
  • naming
  • Nanoearthquakes
  • nanomachine
  • nasa
  • national security agency
  • Nations
  • Natural
  • Nature
  • naughty dog
  • Neanderthals
  • neato
  • neato d10
  • neato d8
  • neato d9
  • nebraska
  • needs
  • Neglected
  • nemesis
  • neon
  • nest
  • nest hello
  • netflix
  • networks
  • neuralink
  • neurons
  • new mutants
  • new orleans
  • new swift 5 and swift 3 from acer
  • new tab page
  • new years eve
  • newegg
  • newegg deals
  • newest
  • Newly
  • news
  • newsletter
  • newyork
  • next-gen
  • nfl
  • nfl network
  • nfl redzone
  • ngo
  • nhra nationals
  • nhtsa
  • nick antosca
  • nickelodeon
  • nicolas cage
  • nike
  • nike deals
  • niki caro
  • ninebot
  • ninja
  • nintendo
  • nintendo switch
  • nintendo switch deals
  • no man's sky
  • no time to die
  • noah ringer
  • noise
  • noise cancelling
  • noise-canceling
  • Nokia
  • nokia 3310
  • Nominet
  • north korea
  • north pole
  • northern
  • nos4a2
  • nostalgia
  • not the fun jedi saga
  • notebook
  • notice
  • Novak
  • Novel
  • novels
  • nsa
  • nsa scandal
  • nubia watch
  • nubia watch review
  • Nuclear
  • Nuggets
  • nuke
  • Nurses
  • nvidai
  • nvidia
  • nvidia geforce
  • nvidia rtx 3070
  • nvidia rtx 3080
  • nvidia rtx 3090
  • Nvidia’s
  • nvidiageforce
  • nxtpaper
  • nyc
  • nypd
  • Ocean
  • oceans
  • oculus quest
  • offer
  • offered
  • offering
  • offers
  • official
  • oil and gas
  • oil spill
  • older
  • Olufsen's
  • olympics
  • on demand
  • oneplus
  • oneplus 7t
  • oneplus watch
  • online
  • OnlyFans
  • onmail
  • open the flood gates
  • opens
  • operating
  • Operation
  • opioids
  • Oracle
  • orbit
  • oregon trail
  • origami
  • origin
  • Orion
  • orion pictures
  • our garbage president
  • outage
  • outages
  • Outbreak
  • Overcast's
  • overheating
  • OVHcloud
  • oxygen
  • P-Series
  • pacemakers
  • packages
  • packs
  • paleontology
  • panasonic
  • panasonic lumix s5
  • Panasonic's
  • Pandemic
  • Panther
  • paper
  • paper based electronics
  • paramount
  • participate
  • partybox
  • pascal
  • patch
  • patent
  • Pattinson
  • pavement
  • paying
  • payments
  • paypal
  • pbug
  • pc
  • pc gaming
  • pco
  • peacock
  • Peculiar
  • peddling to nowhere
  • pedro pascal
  • peloton
  • penguin random house
  • pens
  • Pentagon
  • People
  • permafrost
  • permanent
  • permanently
  • permuted press
  • Personal
  • personal computing
  • personal data
  • personalization
  • petrochemicals
  • pfizer
  • Philips
  • philips hue
  • phone
  • phone cases
  • phone trees
  • phones
  • Photography
  • photon
  • Photos
  • pictures
  • pilot
  • pins
  • Pinterest
  • pinterest today
  • pique your interest
  • Pixel
  • plague rallies
  • planetary
  • planetary science
  • plans
  • Plant
  • plants
  • Plasmin
  • plastic
  • plastic pollution
  • platforms
  • play store
  • playstation
  • playstation 4
  • playstation 5
  • playstation vr
  • playstation4
  • playstationvr
  • please help my brain its very sick
  • please no
  • pleasure
  • plugin
  • poaching
  • poco x3
  • pocox3
  • podcast
  • podcasts
  • point-of-care
  • pokemon go
  • polar orbit
  • Polestar
  • polestar 2
  • police
  • police shootings
  • policy
  • Political
  • political ads
  • politics
  • Pollination
  • populations
  • porsche
  • Portable
  • portable speaker
  • portable speakers
  • portfolios
  • Portugal
  • possessor
  • Possible
  • Post-COVID
  • postal apocalypse
  • postal service
  • potential
  • powerful
  • powertrain
  • practical magic
  • pre-order
  • Predator
  • predator x25
  • predict
  • predictions
  • pregnancy
  • pregnancy tests
  • prehistoric
  • premier access
  • Premiere
  • premium
  • preorder
  • preorders
  • prepared
  • presents
  • president
  • president trump
  • presige 14 evo
  • pressure cooker
  • pressure-lowering
  • presumably
  • Preventing
  • preview
  • price
  • price drop
  • prices
  • primal
  • Prime
  • prime air
  • prime deliveries
  • prime gaming
  • prime video
  • prince harry
  • princeharry
  • principles
  • print
  • printer
  • Prior
  • prison phone app
  • privacy
  • privacy and security
  • problems
  • processor
  • processors
  • product
  • Products
  • Program
  • programs
  • prohibited
  • project
  • project 10 million
  • project athena
  • projector
  • projectors
  • proof
  • Proposed
  • props
  • propulsion
  • prosthetics
  • protein
  • protests
  • prototype
  • provide
  • ps plus
  • ps vr
  • ps1
  • ps2
  • ps3
  • ps4
  • ps5
  • psvr
  • pubg
  • pubg corporation
  • pubg mobile
  • pubg mobile nordic map
  • pubgmsg
  • purchase
  • purchased
  • purdue university
  • putting
  • pxo
  • qanon
  • qopy notes
  • quadruple
  • Qualcomm
  • qualcomm snapdragon
  • qualcomm snapdragon 8cx gen 2
  • Qualcomm's
  • quantum
  • quarter mile
  • quicker
  • quickly
  • quoll
  • quote
  • quote tweet
  • race
  • race car
  • racing
  • racism
  • Radiocarbon
  • Radiologists
  • Raised
  • ralph macchio
  • ram
  • rami ismail
  • RAMPOW
  • randomised
  • Raptors
  • rare earth metals
  • ray-tracing
  • raytheon
  • raytracing
  • razer
  • razer blade 15
  • razer deals
  • Razer's
  • razr
  • razr 2
  • reaches
  • readily
  • real estate
  • reality
  • Realme
  • realtor
  • recent
  • recipe
  • recommended reading
  • record
  • recreading
  • redesign
  • Redmi
  • reels
  • reface
  • reflex
  • reflex latency analyzer
  • refresh rate
  • Regional
  • regulates
  • regulating
  • regulation
  • reinfection
  • release
  • release date
  • released
  • releasedate
  • releases
  • releasing
  • relic
  • reliever
  • relocation
  • remain
  • remote
  • remote learning
  • remote vehicle setup
  • remove
  • removed
  • renewable energy
  • rental
  • repair
  • Report
  • reportedly
  • reporting
  • representation
  • reproductive health
  • reproductive justice
  • Republican
  • republicans
  • Research
  • Researchers
  • resembles
  • reset
  • resignation
  • resolution
  • Resource
  • respiratory
  • response
  • restriction
  • retail
  • Retest
  • retro
  • retro gaming
  • return
  • return of the jedi
  • retweet
  • retweet with comment
  • reunite
  • reusable
  • reusable spacecraft
  • revealed
  • reveals
  • Revel
  • reverse engineering
  • review
  • reviews
  • Revolt
  • reweaving
  • rexlex
  • rhythm
  • rian johnson
  • rianjohnson
  • richard branson
  • richard donner
  • rick snyder
  • right
  • right wing extremism
  • ring
  • riot games
  • rip
  • risks
  • rival
  • riverdale
  • rmit university
  • roadmap
  • roads
  • roav
  • roav deals
  • Robert
  • robert pattinson
  • robert reiner
  • robin wright
  • robot
  • robotic
  • robotic vacuum
  • robots
  • rocket
  • rocket lab
  • rocket league
  • rockets
  • room
  • room 104
  • rosamund pike
  • rosamundpike
  • rough
  • routes
  • royal family
  • royalfamily
  • rtx
  • rtx 30 series
  • rtx 3000
  • rtx 3070
  • rtx 3080
  • rtx 3090
  • rumor
  • rumors
  • running
  • rupert murdoch
  • rural
  • russia
  • s1
  • safety
  • sales
  • samara weaving
  • samsung
  • samsung deals
  • samsung galaxy fit2
  • samsung unpacked
  • Samsung's
  • san francisco
  • sandragon 8cx
  • Santana
  • sars cov 2
  • satechi
  • satellite
  • satellites
  • saucy nugs
  • savings
  • scam
  • scams
  • scandals
  • scanwatch
  • school
  • schools
  • sci fi
  • science
  • Scientist
  • scientists
  • scorched
  • score
  • scott pruitt
  • scream 5
  • screen
  • screen pass
  • sd-03
  • Seagate
  • sean bean
  • sean murray
  • seanan mcguire
  • season
  • section 702
  • security
  • sedan
  • seeds
  • sega
  • segway
  • segway es2
  • select
  • self-centered
  • self-driving
  • self-organizing
  • sells
  • semi-autonomous
  • Sennheiser
  • sensing
  • sensor
  • September
  • sequencer
  • sequencing
  • Serena
  • Serengeti
  • Series
  • series 3
  • services
  • Severe
  • Shade
  • Shadowlands
  • shares
  • sharing
  • shenmue
  • shenmue 3
  • shield
  • shopping
  • short-throw projector
  • shortcut
  • shortcuts
  • shows
  • shudder
  • shut up and take my money
  • siberia
  • sick days
  • side deal deals
  • sidedeals
  • sights
  • signs
  • Silicon
  • Silver
  • simply
  • simulating
  • simulation
  • singapore
  • singing
  • sinkholes
  • skin
  • skullcandy
  • skydrive
  • skyscraper
  • slack
  • sleep
  • small
  • smart
  • smart clock
  • smart glasses
  • smart home
  • smart homes
  • smart lighting
  • smart lights
  • smart lock
  • smart speakers
  • smarthome
  • smartlighting
  • smartlock
  • smartphone
  • smartphones
  • smartwatch
  • smartwatches
  • smic
  • smoker
  • smoking
  • snapdragon
  • snapdragon 732g
  • snapdragon 765
  • snapdragon 8cx
  • snapdragon 8cx gen 2
  • social distancing
  • social life
  • social media
  • social media mistakes
  • social network
  • social networking
  • sociology
  • software
  • solar
  • solo pro
  • solve
  • Songbirds
  • Sonos
  • sony
  • Sony's
  • soundbar
  • south korea
  • southern route
  • space
  • space race
  • spacecraft
  • spaceflight
  • spacelopnik
  • spaceshiptwo
  • SpaceX
  • Spain
  • sparks
  • speaker
  • speakers
  • Special
  • species
  • specifications
  • spectre x360 13
  • speed
  • spent
  • spike
  • split inbox
  • split-second
  • Splitting
  • sports
  • sports plus
  • Spotify-owned
  • spread
  • sputnik v
  • square enix
  • st patricks day
  • stadia
  • Stage
  • stanford university
  • star trek
  • star trek 4
  • star trek discovery
  • star trek the motion picture
  • star trek the motion pictureinside the art and visual effects
  • star wars
  • star wars galaxys edge
  • star wars rebels
  • star wars the high republic
  • star wars the last jedi
  • star wars the rise of skywalker
  • Starlink
  • starlink hits streaming milestone
  • starship
  • start
  • starts
  • starwars
  • state
  • states
  • stationary
  • stationary bike
  • statistics
  • steady
  • stealth 15m
  • Steam
  • steelseries
  • stephen hawking
  • steroids
  • steven spielberg
  • stick
  • stop-motion animation
  • store
  • stories
  • story
  • stranger things
  • stream
  • streaming
  • streaming video
  • streaming wars
  • strength
  • Stress
  • Strix
  • Strokes
  • Strong
  • Structural
  • Structure
  • student
  • Study
  • sturgis
  • sub-6
  • subscription codes
  • subsurface oceans
  • subterranean oceans
  • Subtypes
  • success
  • suffering
  • suicide
  • suicide prevention
  • suited
  • summit b
  • summit e
  • summit series
  • sunglasses
  • sunlight
  • sunrise movement
  • sunscreen
  • Super
  • super bomberman r
  • super bomberman r online
  • super mario
  • super mario 3d all-stars
  • super mario 3d world
  • super mario 64
  • super mario all-stars
  • super mario bros.
  • super mario bros. 35
  • super mario galaxy
  • super mario sunshine
  • super typhoons
  • superlist
  • superman and lois
  • superpowers
  • SuperTank
  • supplier
  • support
  • supposedly
  • Supra
  • Surface
  • surface duo
  • surprise
  • surprising
  • surveillance
  • susanna clarke
  • suv
  • swamp thing
  • sweden
  • Swift
  • swift 3
  • swift 5
  • swift3
  • switch
  • switch online
  • syfy
  • syndrome
  • synth
  • synthesizer
  • Synthetic
  • T-Mobile
  • T-Mobile's
  • tablet
  • tabletop games
  • tablets
  • take-two interactive
  • takes
  • taobao
  • tar
  • taser
  • tattoo
  • taxes
  • taycan
  • taycan cross turismo
  • tcl
  • tcl nxtpaper
  • TCL's
  • team joe
  • Team's
  • TeamGroup
  • tease
  • tech policy
  • technique
  • technology
  • TechRadar's
  • teenage engineering
  • Teenagers
  • telecoms
  • telemate
  • TELEVISION
  • telmate
  • Tencent
  • tencent games
  • Tenet
  • terms
  • terms of disservice
  • tesla
  • test flight
  • testbed
  • testing
  • tetris
  • texas
  • text-to-speech
  • textlies
  • thanks
  • that's
  • the 100
  • the amazon is burning at an alarming rate
  • the avengers
  • the batman
  • the best keyboards
  • the best of gizmodo
  • the best stories of the week
  • the best tech for remote learning
  • the boys
  • the descent
  • the division 2
  • the dream architects
  • the engadget podcast
  • the goonies
  • the host
  • the last campfire
  • the last of us
  • the last of us part ii
  • the magicians
  • the mandalorian
  • the matrix
  • the matrix 4
  • the multivorce
  • the new mutants
  • the premiere
  • the princess bride
  • the riddler
  • the silver arrow
  • the sims
  • the three-body problem
  • the walking dead
  • the witcher 3
  • thebuyersguide
  • thedivision2
  • theengadgetpodcast
  • themandalorian
  • theme partks
  • themorningafter
  • theory
  • Therapeutic
  • therapy
  • There
  • There's
  • These
  • thethreebodyproblem
  • they call it global warming for a reason
  • they cloned tyrone
  • things
  • think
  • third
  • this is not the future
  • thom browne
  • Thousands
  • thps
  • thq
  • thrawn
  • thrawn ascendancy chaos rising
  • threatening
  • Three
  • Throne
  • throwing
  • TicWatch
  • Tiger
  • tiger lake
  • tiktok
  • tim sweeney
  • Time's
  • timothy olyphant
  • timothy zahn
  • titan books
  • Today
  • Today's
  • toilets
  • tokyo olympics
  • tomorrow
  • tony hawk
  • tony hawk's pro skater
  • tools
  • totally
  • toyota
  • track
  • tracy deonn
  • trade
  • trade war
  • traffic
  • trailers
  • trainees
  • transfer
  • transit
  • transmission
  • transportation
  • trayford pellerin
  • tread
  • treadmill
  • treat
  • treatment
  • trees
  • trending topic
  • treyarch
  • trials
  • tricks
  • tripled
  • trivia
  • true wireless
  • true wireless earbuds
  • truestrike
  • trump
  • trump administration
  • trump rallies
  • Trump's
  • trumps america
  • tucker carlson
  • tumors
  • Tungsten
  • turing
  • turned
  • turntables
  • turtles
  • tv
  • tvs
  • tweets
  • twist
  • twitch
  • twitch sings
  • twitter
  • typhoons
  • typical
  • uber
  • Ubisoft
  • Ubisoft's
  • ufc
  • ufc 4
  • ula
  • Ulster
  • Ultra
  • ultra short throw projector
  • Ultrabooks
  • ultraportables
  • unboxing
  • Uncategorized @hi
  • Unconventional
  • uncover
  • Uncovering
  • under-display
  • understanding
  • unexpected
  • unfair
  • unfiltered
  • unintentionally
  • Unique
  • United
  • united launch alliance
  • united nations
  • unlock
  • unprecedented
  • unreal engine
  • unveils
  • upcoming
  • Update
  • upgrade
  • upper
  • us air force
  • us military
  • usda
  • user data
  • user review
  • user review roundup
  • user reviews
  • userreview
  • userreviewroundup
  • userreviews
  • users
  • Using
  • usps
  • ust
  • vacation
  • vaccine
  • Vaccines
  • vacuum
  • valentines day
  • validates
  • valve
  • vanderbilt university
  • vantrue
  • vaping
  • variations
  • vava
  • vava deals
  • vehicle
  • vehicles
  • Velour
  • Venom
  • verizon
  • version 1.7.14.0
  • vertical
  • vesa
  • vfx
  • vibert thio
  • vicarious visions
  • victoria
  • victorian police
  • videgames
  • video
  • video authenticator
  • video cards
  • video games
  • video streaming
  • videocards
  • videos
  • vinyl
  • viral videos
  • virgin galactic
  • virginia
  • Virgo
  • virtual
  • virtual reality
  • virtual showroom
  • virtual tour
  • Viruses
  • visually impaired
  • Vitamin
  • Vizio
  • vlambeer
  • vlogging
  • vod
  • voice acting
  • voice assistant
  • Volkswagen
  • volta zero
  • voting
  • voting information center
  • vr
  • vr gaming
  • vrgaming
  • vss unity
  • vulnerable
  • wakanda
  • wallops island
  • wally wingert
  • Walmart
  • walmart is coming
  • wanted pinkertons
  • wants
  • Warcraft
  • warner bros
  • Warriors
  • Wasps
  • watch
  • watch es
  • watch gs pro
  • watch it nerds
  • watch parties
  • watches
  • water
  • water resistant
  • waze
  • wearable
  • wearables
  • weather
  • weather is happening
  • web
  • web browsers
  • web tracking
  • webcams
  • weber
  • weber smokefire ex4
  • weber smokefire ex4 review
  • website
  • weed
  • weeklydeals
  • weigh
  • Weight
  • Welcome
  • wernher von braun
  • West'
  • western
  • western digital
  • western digital deals
  • whales
  • What's
  • whatever
  • WhatsApp
  • Where
  • Which
  • white house
  • white privilege
  • whole foods market
  • why is it always florida
  • widescreen
  • wifi
  • wifi 6
  • wifi smart lock
  • wifi6
  • wikipedia
  • wildfire season is year round now
  • wildfires
  • wildleaks
  • wildlife
  • william zabka
  • Williams
  • winamp skin museum
  • windows
  • windows 10
  • windows 95
  • windows on arm
  • wing
  • winner
  • winning
  • wireless
  • wireless headphones
  • wisconsin
  • wishes
  • Witcher
  • withdraws
  • withings
  • withings scanwatch
  • Wolves
  • Women
  • won't
  • wonder woman 1984
  • woodpeckers
  • Wool-like
  • WordPress
  • working
  • workout
  • workplace
  • workstation
  • World
  • world health organization
  • world's
  • worsens
  • worst
  • worth
  • writing
  • Wrong-way'
  • wynonna earp
  • x men
  • X-ray
  • x3
  • x44
  • xbox
  • xbox deals
  • xbox live gold
  • xbox series s
  • xbox series x
  • Xiaomi
  • Xiaomi's
  • Xperia
  • xperia 5 ii
  • xps 13
  • Yahoo
  • years
  • Yellowstone
  • yoda
  • yoga
  • yoson an
  • you get a laptop and you get a laptop
  • you're
  • youku
  • Young
  • your news update
  • youtube
  • youtube tv
  • yu suzuki
  • yummy
  • yves maitre
  • z
  • zack snyder
  • zenbook 13
  • zenbook flip 13
  • zenbook flip s
  • zenbook s
  • Zendure
  • Zenfone
  • zimbabwe
  • zombies
  • Zooming
  • zte
  • zuko

Advertise

Contact us

Follow Us

Recent News

Poco C3 to Feature 13-Megapixel Triple Rear Camera Setup, Up to 4GB RAM

Poco C3 to Feature 13-Megapixel Triple Rear Camera Setup, Up to 4GB RAM

October 3, 2020
Know About Gandhi jayanti 2020: etihaas, mahatv

Know About Gandhi jayanti 2020: etihaas, mahatv

October 1, 2020

जिज्ञासा ज़रूरी है इसीलिए हम आपको देंगे जानकारी जो आपकी जिज्ञासा की प्यास को बुझा देगी
© JIGYAASA.IN

No Result
View All Result
  • Home

© 2020 JIGYAASA.IN