Jigyaasa
  • Home
No Result
View All Result
Jigyaasa
  • Home
No Result
View All Result
Jigyaasa
No Result
View All Result

How to Grid Search Data Preparation Techniques

Subhanshu Singh by Subhanshu Singh
July 15, 2020
in Artificial Intelligence
0
how-to-grid-search-data-preparation-techniques
0
VIEWS
Share on FacebookShare on Twitter

Machine learning predictive modeling performance is only as good as your data, and your data is only as good as the way you prepare it for modeling.

The most common approach to data preparation is to study a dataset and review the expectations of a machine learning algorithms, then carefully choose the most appropriate data preparation techniques to transform the raw data to best meet the expectations of the algorithm. This is slow, expensive, and requires a vast amount of expertise.

An alternative approach to data preparation is to grid search a suite of common and commonly useful data preparation techniques to the raw data. This is an alternative philosophy for data preparation that treats data transforms as another hyperparameter of the modeling pipeline to be searched and tuned.

This approach requires less expertise than the traditional manual approach to data preparation, although it is computationally costly. The benefit is that it can aid in the discovery of non-intuitive data preparation solutions that achieve good or best performance for a given predictive modeling problem.

In this tutorial, you will discover how to use the grid search approach for data preparation with tabular data.

After completing this tutorial, you will know:

  • Grid search provides an alternative approach to data preparation for tabular data, where transforms are tried as hyperparameters of the modeling pipeline.
  • How to use the grid search method for data preparation to improve model performance over a baseline for a standard classification dataset.
  • How to grid search sequences of data preparation methods to further improve model performance.

Discover data cleaning, feature selection, data transforms, dimensionality reduction and much more in my new book, with 30 step-by-step tutorials and full Python source code.

Let’s get started.

How to Grid Search Data Preparation Techniques

How to Grid Search Data Preparation Techniques

Photo by Wall Boat, some rights reserved.

Tutorial Overview

This tutorial is divided into three parts; they are:

  1. Grid Search Technique for Data Preparation
  2. Dataset and Performance Baseline
    1. Wine Classification Dataset
    2. Baseline Model Performance
  3. Grid Search Approach to Data Preparation

Grid Search Technique for Data Preparation

Data preparation can be challenging.

The approach that is most often prescribed and followed is to analyze the dataset, review the requirements of the algorithms, and transform the raw data to best meet the expectations of the algorithms.

This can be effective but is also slow and can require deep expertise with data analysis and machine learning algorithms.

An alternative approach is to treat the preparation of input variables as a hyperparameter of the modeling pipeline and to tune it along with the choice of algorithm and algorithm configurations.

This might be a data transform that “should not work” or “should not be appropriate for the algorithm” yet results in good or great performance. Alternatively, it may be the absence of a data transform for an input variable that is deemed “absolutely required” yet results in good or great performance.

This can be achieved by designing a grid search of data preparation techniques and/or sequences of data preparation techniques in pipelines. This may involve evaluating each on a single chosen machine learning algorithm, or on a suite of machine learning algorithms.

The benefit of this approach is that it always results in suggestions of modeling pipelines that give good relative results. Most importantly, it can unearth the non-obvious and unintuitive solutions to practitioners without the need for deep expertise.

We can explore this approach to data preparation with a worked example.

Before we dive into a worked example, let’s first select a standard dataset and develop a baseline in performance.

Want to Get Started With Data Preparation?

Take my free 7-day email crash course now (with sample code).

Click to sign-up and also get a free PDF Ebook version of the course.

Download Your FREE Mini-Course

Dataset and Performance Baseline

In this section, we will first select a standard machine learning dataset and establish a baseline in performance on this dataset. This will provide the context for exploring the grid search method of data preparation in the next section.

Wine Classification Dataset

We will use the wine classification dataset.

This dataset has 13 input variables that describe the chemical composition of samples of wine and requires that the wine be classified as one of three types.

You can learn more about the dataset here:

  • Wine Dataset (wine.csv)
  • Wine Dataset Description (wine.names)

No need to download the dataset as we will download it automatically as part of our worked examples.

Open the dataset and review the raw data. The first few rows of data are listed below.

We can see that it is a multi-class classification predictive modeling problem with numerical input variables, each of which has different scales.

14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065,1

13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050,1

13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185,1

14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480,1

13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735,1

…

The example below loads the dataset and splits it into the input and output columns, then summarizes the data arrays.

# example of loading and summarizing the wine dataset

from pandas import read_csv

# define the location of the dataset

url = ‘https://raw.githubusercontent.com/jbrownlee/Datasets/master/wine.csv’

# load the dataset as a data frame

df = read_csv(url, header=None)

# retrieve the numpy array

data = df.values

# split the columns into input and output variables

X, y = data[:, :–1], data[:, –1]

# summarize the shape of the loaded data

print(X.shape, y.shape)

Running the example, we can see that the dataset was loaded correctly and that there are 179 rows of data with 13 input variables and a single target variable.

Next, let’s evaluate a model on this dataset and establish a baseline in performance.

Baseline Model Performance

We can establish a baseline in performance on the wine classification task by evaluating a model on the raw input data.

In this case, we will evaluate a logistic regression model.

First, we can define a function to load the dataset and perform some minimal data preparation to ensure the inputs are numeric and the target is label encoded.

# prepare the dataset

def load_dataset():

# load the dataset

url = ‘https://raw.githubusercontent.com/jbrownlee/Datasets/master/wine.csv’

df = read_csv(url, header=None)

data = df.values

X, y = data[:, :–1], data[:, –1]

# minimally prepare dataset

X = X.astype(‘float’)

y = LabelEncoder().fit_transform(y.astype(‘str’))

return X, y

We will evaluate the model using the gold standard of repeated stratified k-fold cross-validation with 10 folds and three repeats.

# evaluate a model

def evaluate_model(X, y, model):

# define the cross-validation procedure

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

# evaluate model

scores = cross_val_score(model, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

return scores

We can then call the function to load the dataset, define our model, then evaluate it, reporting the mean and standard deviation accuracy.

...

# get the dataset

X, y = load_dataset()

# define the model

model = LogisticRegression(solver=‘liblinear’)

# evaluate the model

scores = evaluate_model(X, y, model)

# report performance

print(‘Accuracy: %.3f (%.3f)’ % (mean(scores), std(scores)))

Tying this together, the complete example of evaluating a logistic regression model on the raw wine classification dataset is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

# baseline model performance on the wine dataset

from numpy import mean

from numpy import std

from pandas import read_csv

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

# prepare the dataset

def load_dataset():

# load the dataset

url = ‘https://raw.githubusercontent.com/jbrownlee/Datasets/master/wine.csv’

df = read_csv(url, header=None)

data = df.values

X, y = data[:, :–1], data[:, –1]

# minimally prepare dataset

X = X.astype(‘float’)

y = LabelEncoder().fit_transform(y.astype(‘str’))

return X, y

# evaluate a model

def evaluate_model(X, y, model):

# define the cross-validation procedure

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

# evaluate model

scores = cross_val_score(model, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

return scores

# get the dataset

X, y = load_dataset()

# define the model

model = LogisticRegression(solver=‘liblinear’)

# evaluate the model

scores = evaluate_model(X, y, model)

# report performance

print(‘Accuracy: %.3f (%.3f)’ % (mean(scores), std(scores)))

Running the example evaluates the model performance and reports the mean and standard deviation classification accuracy.

Your results may vary given the stochastic nature of the learning algorithm, the evaluation procedure, and differences in precision across machines. Try running the example a few times.

In this case, we can see that the logistic regression model fit on the raw input data achieved the average classification accuracy of about 95.3 percent, providing a baseline in performance.

Next, let’s explore whether we can improve the performance using the grid-search-based approach to data preparation.

Grid Search Approach to Data Preparation

In this section, we can explore whether we can improve performance using the grid search approach to data preparation.

The first step is to define a series of modeling pipelines to evaluate, where each pipeline defines one (or more) data preparation techniques and ends with a model that takes the transformed data as input.

We will define a function to create these pipelines as a list of tuples, where each tuple defines the short name for the pipeline and the pipeline itself. We will evaluate a range of different data scaling methods (e.g. MinMaxScaler and StandardScaler), distribution transforms (QuantileTransformer and KBinsDiscretizer), as well as dimensionality reduction transforms (PCA and SVD).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

# get modeling pipelines to evaluate

def get_pipelines(model):

pipelines = list()

# normalize

p = Pipeline([(‘s’,MinMaxScaler()), (‘m’,model)])

pipelines.append((‘norm’, p))

# standardize

p = Pipeline([(‘s’,StandardScaler()), (‘m’,model)])

pipelines.append((‘std’, p))

# quantile

p = Pipeline([(‘s’,QuantileTransformer(n_quantiles=100, output_distribution=‘normal’)), (‘m’,model)])

pipelines.append((‘quan’, p))

# discretize

p = Pipeline([(‘s’,KBinsDiscretizer(n_bins=10, encode=‘ordinal’, strategy=‘uniform’)), (‘m’,model)])

pipelines.append((‘kbins’, p))

# pca

p = Pipeline([(‘s’,PCA(n_components=7)), (‘m’,model)])

pipelines.append((‘pca’, p))

# svd

p = Pipeline([(‘s’,TruncatedSVD(n_components=7)), (‘m’,model)])

pipelines.append((‘svd’, p))

return pipelines

We can then call this function to get the list of transforms, then enumerate each, evaluating it and reporting the performance along the way.

...

# get the modeling pipelines

pipelines = get_pipelines(model)

# evaluate each pipeline

results, names = list(), list()

for name, pipeline in pipelines:

# evaluate

scores = evaluate_model(X, y, pipeline)

# summarize

print(‘>%s: %.3f (%.3f)’ % (name, mean(scores), std(scores)))

# store

results.append(scores)

names.append(name)

At the end of the run, we can create a box and whisker plot for each set of scores and compare the distributions of results visually.

...

# plot the result

pyplot.boxplot(results, labels=names, showmeans=True)

pyplot.show()

Tying this together, the complete example of grid searching data preparation techniques on the wine classification dataset is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

# compare data preparation methods for the wine classification dataset

from numpy import mean

from numpy import std

from pandas import read_csv

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import QuantileTransformer

from sklearn.preprocessing import KBinsDiscretizer

from sklearn.decomposition import PCA

from sklearn.decomposition import TruncatedSVD

from matplotlib import pyplot

# prepare the dataset

def load_dataset():

# load the dataset

url = ‘https://raw.githubusercontent.com/jbrownlee/Datasets/master/wine.csv’

df = read_csv(url, header=None)

data = df.values

X, y = data[:, :–1], data[:, –1]

# minimally prepare dataset

X = X.astype(‘float’)

y = LabelEncoder().fit_transform(y.astype(‘str’))

return X, y

# evaluate a model

def evaluate_model(X, y, model):

# define the cross-validation procedure

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

# evaluate model

scores = cross_val_score(model, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

return scores

# get modeling pipelines to evaluate

def get_pipelines(model):

pipelines = list()

# normalize

p = Pipeline([(‘s’,MinMaxScaler()), (‘m’,model)])

pipelines.append((‘norm’, p))

# standardize

p = Pipeline([(‘s’,StandardScaler()), (‘m’,model)])

pipelines.append((‘std’, p))

# quantile

p = Pipeline([(‘s’,QuantileTransformer(n_quantiles=100, output_distribution=‘normal’)), (‘m’,model)])

pipelines.append((‘quan’, p))

# discretize

p = Pipeline([(‘s’,KBinsDiscretizer(n_bins=10, encode=‘ordinal’, strategy=‘uniform’)), (‘m’,model)])

pipelines.append((‘kbins’, p))

# pca

p = Pipeline([(‘s’,PCA(n_components=7)), (‘m’,model)])

pipelines.append((‘pca’, p))

# svd

p = Pipeline([(‘s’,TruncatedSVD(n_components=7)), (‘m’,model)])

pipelines.append((‘svd’, p))

return pipelines

# get the dataset

X, y = load_dataset()

# define the model

model = LogisticRegression(solver=‘liblinear’)

# get the modeling pipelines

pipelines = get_pipelines(model)

# evaluate each pipeline

results, names = list(), list()

for name, pipeline in pipelines:

# evaluate

scores = evaluate_model(X, y, pipeline)

# summarize

print(‘>%s: %.3f (%.3f)’ % (name, mean(scores), std(scores)))

# store

results.append(scores)

names.append(name)

# plot the result

pyplot.boxplot(results, labels=names, showmeans=True)

pyplot.show()

Running the example evaluates the performance of each pipeline and reports the mean and standard deviation classification accuracy.

Your results may vary given the stochastic nature of the learning algorithm, the evaluation procedure, and differences in precision across machines. Try running the example a few times.

In this case, we can see that standardizing the input variables and using a quantile transform both achieves the best result with a classification accuracy of about 98.7 percent, an improvement over the baseline with no data preparation that achieved a classification accuracy of 95.3 percent.

You can add your own modeling pipelines to the get_pipelines() function and compare their result.

Can you get better results?


Let me know in the comments below.

>norm: 0.976 (0.031)

>std: 0.987 (0.023)

>quan: 0.987 (0.023)

>kbins: 0.968 (0.045)

>pca: 0.963 (0.039)

>svd: 0.953 (0.048)

A figure is created showing box and whisker plots that summarize the distribution of classification accuracy scores for each data preparation technique. We can see that the distribution of scores for the standardization and quantile transforms are compact and very similar and have an outlier. We can see that the spread of scores for the other transforms is larger and skewing down.

The results may suggest that standardizing the dataset is probably an important step in the data preparation and related transforms, such as the quantile transform, and perhaps even the power transform may offer benefits if combined with standardization by making one or more input variables more Gaussian.

Box and Whisker Plot of Classification Accuracy for Different Data Transforms on the Wine Classification Dataset

Box and Whisker Plot of Classification Accuracy for Different Data Transforms on the Wine Classification Dataset

We can also explore sequences of transforms to see if they can offer a lift in performance.

For example, we might want to apply RFE feature selection after the standardization transform to see if the same or better results can be used with fewer input variables (e.g. less complexity).

We might also want to see if a power transform preceded with a data scaling transform can achieve good performance on the dataset as we believe it could given the success of the quantile transform.

The updated get_pipelines() function with sequences of transforms is provided below.

# get modeling pipelines to evaluate

def get_pipelines(model):

pipelines = list()

# standardize

p = Pipeline([(‘s’,StandardScaler()), (‘r’, RFE(estimator=LogisticRegression(solver=‘liblinear’), n_features_to_select=10)), (‘m’,model)])

pipelines.append((‘std’, p))

# scale and power

p = Pipeline([(‘s’,MinMaxScaler((1,2))), (‘p’, PowerTransformer()), (‘m’,model)])

pipelines.append((‘power’, p))

return pipelines

Tying this together, the complete example is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

# compare sequences of data preparation methods for the wine classification dataset

from numpy import mean

from numpy import std

from pandas import read_csv

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import QuantileTransformer

from sklearn.preprocessing import PowerTransformer

from sklearn.preprocessing import KBinsDiscretizer

from sklearn.decomposition import PCA

from sklearn.decomposition import TruncatedSVD

from sklearn.feature_selection import RFE

from matplotlib import pyplot

# prepare the dataset

def load_dataset():

# load the dataset

url = ‘https://raw.githubusercontent.com/jbrownlee/Datasets/master/wine.csv’

df = read_csv(url, header=None)

data = df.values

X, y = data[:, :–1], data[:, –1]

# minimally prepare dataset

X = X.astype(‘float’)

y = LabelEncoder().fit_transform(y.astype(‘str’))

return X, y

# evaluate a model

def evaluate_model(X, y, model):

# define the cross-validation procedure

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

# evaluate model

scores = cross_val_score(model, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1)

return scores

# get modeling pipelines to evaluate

def get_pipelines(model):

pipelines = list()

# standardize

p = Pipeline([(‘s’,StandardScaler()), (‘r’, RFE(estimator=LogisticRegression(solver=‘liblinear’), n_features_to_select=10)), (‘m’,model)])

pipelines.append((‘std’, p))

# scale and power

p = Pipeline([(‘s’,MinMaxScaler((1,2))), (‘p’, PowerTransformer()), (‘m’,model)])

pipelines.append((‘power’, p))

return pipelines

# get the dataset

X, y = load_dataset()

# define the model

model = LogisticRegression(solver=‘liblinear’)

# get the modeling pipelines

pipelines = get_pipelines(model)

# evaluate each pipeline

results, names = list(), list()

for name, pipeline in pipelines:

# evaluate

scores = evaluate_model(X, y, pipeline)

# summarize

print(‘>%s: %.3f (%.3f)’ % (name, mean(scores), std(scores)))

# store

results.append(scores)

names.append(name)

# plot the result

pyplot.boxplot(results, labels=names, showmeans=True)

pyplot.show()

Running the example evaluates the performance of each pipeline and reports the mean and standard deviation classification accuracy.

Your results may vary given the stochastic nature of the learning algorithm, the evaluation procedure, and differences in precision across machines. Try running the example a few times.

In this case, we can see that the standardization with feature selection offers an additional lift in accuracy from 98.7 percent to 98.9 percent, although the data scaling and power transform do not offer any additional benefit over the quantile transform.

>std: 0.989 (0.022)

>power: 0.987 (0.023)

A figure is created showing box and whisker plots that summarize the distribution of classification accuracy scores for each data preparation technique.

We can see that the distribution of results for both pipelines of transforms is compact with very little spread other than outlier.

Box and Whisker Plot of Classification Accuracy for Different Sequences of Data Transforms on the Wine Classification Dataset

Box and Whisker Plot of Classification Accuracy for Different Sequences of Data Transforms on the Wine Classification Dataset

Further Reading

This section provides more resources on the topic if you are looking to go deeper.

Books

  • Feature Engineering and Selection, 2019.
  • Feature Engineering for Machine Learning, 2018.

APIs

  • sklearn.pipeline.Pipeline API.

Summary

In this tutorial, you discovered how to use a grid search approach for data preparation with tabular data.

Specifically, you learned:

  • Grid search provides an alternative approach to data preparation for tabular data, where transforms are tried as hyperparameters of the modeling pipeline.
  • How to use the grid search method for data preparation to improve model performance over a baseline for a standard classification dataset.
  • How to grid search sequences of data preparation methods to further improve model performance.

Do you have any questions?


Ask your questions in the comments below and I will do my best to answer.

Get a Handle on Modern Data Preparation!

Data Preparation for Machine Learning

Prepare Your Machine Learning Data in Minutes

…with just a few lines of python code

Discover how in my new Ebook:


Data Preparation for Machine Learning

It provides self-study tutorials with full working code on:


Feature Selection, RFE, Data Cleaning, Data Transforms, Scaling, Dimensionality Reduction,
and much more…

Bring Modern Data Preparation Techniques to

Your Machine Learning Projects


See What’s Inside

Tags: aiartificial intelligenceData Preparationmachine learning
Previous Post

For university classrooms, are telepresence robots the next best thing to being there?

Next Post

Wireless aquatic robot could clean water and transport cells

Next Post

Wireless aquatic robot could clean water and transport cells

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Category

  • -core
  • -inch
  • -year-old
  • 'anti-procrastination'
  • 'bang'
  • 'gold'
  • 'plug
  • 'Trending'
  • 0
  • 000 mah battery
  • 1
  • 10 billion dollars
  • 100gb
  • 11th gen
  • 1mii
  • 1mii deals
  • 2
  • 2-in-1
  • 2020 election
  • 2020 elections
  • 2020 presidential election
  • 20th century fox
  • 20th century studios
  • 2d
  • 2in1
  • 3.5 ghz
  • 35th
  • 360hz
  • 3d printing
  • 3dprinting
  • 4-series
  • 4k
  • 50 states of fright
  • 5g
  • 64-megapixel camera
  • 65
  • 8bitdo
  • 8k
  • a dark path
  • a10
  • a20
  • a20 gen 2
  • a40
  • a40tr
  • a50 wireless
  • abide
  • abortion
  • absentee ballots
  • Academy
  • acadiana mall
  • accelerated
  • accept sender
  • accepting
  • accessibility
  • accessibility center of excellence
  • acer
  • acer deals
  • acer spin 7
  • acerspin7
  • Acorn
  • action camera
  • action figures
  • active noise cancellation
  • Activision
  • activision blizzard
  • Activists
  • actually
  • ada
  • adam savage
  • addicted
  • administration
  • adobe
  • adopt
  • adrian smith
  • ads
  • adult swim
  • advanced optimus
  • advertising
  • affect
  • affordable
  • African
  • After
  • after math
  • aftermath
  • agriculture
  • ai
  • air carrier
  • air pollution
  • air quality
  • air travel
  • aircraft
  • AirDrop
  • airline
  • airplanes
  • airpods pro
  • airports
  • Airtel
  • ajit pai
  • alex winter
  • alexa
  • alexa for residential
  • alibaba
  • alice braga
  • alien addiction
  • aliens
  • Alienware
  • alienware 25
  • alienware 27
  • alienware 38
  • alienware deals
  • alipay
  • all up
  • all-electric
  • alphabay
  • alphabet
  • alter
  • Amateur
  • amazfit
  • amazing
  • amazon
  • amazon alexa
  • amazon deals
  • amazon echo
  • amazon flex
  • amazon pay
  • amazon prime
  • amazon prime air
  • amazon prime video
  • amazon.subtember
  • Amazon's
  • amazonalexa
  • amazonpay
  • Ambient
  • amd
  • AMD's
  • American
  • american horror story
  • Amnesia
  • Among
  • amongst
  • ampere
  • analysis
  • anarchists
  • anc
  • Ancient
  • andrea riseborough
  • andrea stewart
  • android
  • android 10
  • android auto
  • android automotive
  • android tablet
  • Android's
  • android10
  • androidtablet
  • animal crossing
  • animation
  • anime
  • anker
  • anker deals
  • annihilation
  • anniversary
  • announcements
  • announces
  • anode
  • Another
  • ant man 3
  • antenna
  • anthony carrigan
  • anti-cheat
  • anti-tracking
  • antibiotics
  • antibodies
  • antibody
  • anticipated
  • antifa
  • antitrust
  • Antiviral
  • antlers
  • anwr
  • anxiety
  • anxious
  • anya taylor joy
  • anyone
  • Aorus
  • apartments
  • apollo 11
  • apologizes
  • app
  • app store
  • apparel
  • appeals
  • apple
  • apple arcade
  • apple arm
  • apple deals
  • apple health
  • apple rumors
  • apple safari
  • apple silicon
  • apple store
  • apple tv
  • apple vs epic
  • apple watch
  • apple watch series 3
  • Apple's
  • application
  • approaching
  • approximately
  • apps
  • ar
  • Arcade
  • arcade stick
  • archives
  • arctic
  • arctic national wildlife refuge
  • area51m
  • argument
  • arm
  • arnold schwarzenneger
  • art gallery
  • artemis mission
  • Artificial Intelligence
  • arturia
  • asobo studio
  • asphalt
  • Assassin's
  • astro
  • astro gaming
  • Astro's
  • astrogaming
  • Astronomers
  • astronomy
  • Astrophysics
  • asus rog strix scar g15
  • asus rog strix scar g15 review
  • Asus'
  • at home fitness
  • at&t
  • atomic
  • attach
  • Attackers
  • Attacking
  • attempts
  • attorney general
  • auction
  • audible
  • audio
  • audiobooks
  • augmented reality
  • augmented reality glasses
  • august
  • august wifi smart lock
  • aukey
  • aukey deals
  • Aurora
  • australia
  • Australia's
  • Australian
  • australian police
  • Authenticator
  • Authorities
  • authors
  • autofocus
  • automation
  • Autonomous
  • autonomous vehicle
  • Autophagy
  • autopilot
  • autoplay
  • av
  • available
  • avatar the last airbender
  • Avengers
  • aviation
  • ayo edibiri
  • azula
  • babies
  • baby yoda
  • backhaul
  • backwards compatibility
  • bacteria
  • balloon
  • ban
  • barrierfree
  • bass
  • batman
  • batman the animated series
  • batmobile
  • batteries
  • battery
  • Battery-free
  • battle
  • battle royale
  • bay area
  • be prepared
  • Beating
  • beats
  • beats deals
  • beautiful
  • beauty
  • bedding
  • bedroom
  • beer
  • behavior
  • behind the scenes
  • Being
  • Belgian
  • believed
  • Bering
  • bering sea
  • best buy deals
  • best of gizmodo
  • beta
  • bethesda
  • bh deals
  • bh photo deals
  • bicycle
  • biden
  • biden-harris
  • big boys
  • big mouth
  • big oil
  • bigger
  • biggest
  • bike
  • bill and ted face the music
  • bill barr
  • bill sienkiewicz
  • billion
  • billy crystal
  • biocontainment
  • biodiversity
  • biohackers
  • biohacking
  • biological
  • bird box
  • Birds
  • bitcoin
  • Black
  • black christmas
  • black hole
  • black lives matter
  • black panther
  • black widow
  • Blade
  • blast
  • blink
  • blink indoor
  • blink outdoor
  • block
  • blocks
  • blogging
  • Blood
  • blood-clotting
  • blu de barrio
  • blu hunt
  • Blu-ray
  • bluetooth
  • bluetooth headphones
  • bluetooth speaker
  • bluetooth speakers
  • bmi
  • board games
  • boat parade
  • boats
  • bob mcleod
  • Bobble
  • bolsonaro
  • bomberman
  • boneless chicken wings
  • book review
  • books
  • bookshelf injection
  • boosts
  • bounce music
  • box office
  • boxes
  • boycott
  • Boyega
  • braille
  • brain
  • brain computer interface
  • brain computer interfaces
  • brain-machine interface
  • Brainstem
  • brand-new
  • branding
  • brandon cronenberg
  • brazil
  • breakdown
  • breaks
  • breast
  • brigette lundy paine
  • brings
  • broadband
  • broadcast
  • brookings institution press
  • brooklyn
  • browser
  • budget
  • budget laptops
  • bug
  • bug fixes
  • bugs
  • build
  • bulk collection
  • bulk data collection
  • bullshit resistance school
  • burned
  • burning
  • burrowing
  • business
  • business laptops
  • butterfly
  • buyers guide
  • bytedance
  • cadmium
  • cake
  • california
  • california wildfires
  • call of duty
  • call of duty black ops cold war
  • call of duty league
  • call of duty: warzone
  • called
  • callofduty
  • callofdutyblackopscoldwar
  • callofdutyleague
  • Calls
  • calltoaction
  • Cambrian
  • camera
  • cameras
  • campaign
  • campaign signs
  • Can't
  • cancer
  • cancer alley
  • canine
  • Canon
  • captain america
  • captions
  • capture
  • Capturing
  • carbon
  • carcinogens
  • cars
  • cartivator
  • cary elwes
  • cases
  • cassandra clare
  • catnap
  • cbs
  • cbs all access
  • cd projekt red
  • cdc
  • cdl
  • cdpr
  • celebrates
  • Cells
  • Celtics
  • censorship
  • century
  • centurylink
  • chadwick boseman
  • chair
  • chairs
  • chamois
  • Champion
  • Championship
  • chance
  • Change
  • changes
  • channel zero
  • charging stations
  • charity
  • charlie heaton
  • cheap
  • cheaper
  • cheapest
  • cheating
  • Check
  • checked
  • cher wang
  • chest
  • chicago
  • chicken wings
  • Children
  • childrens books
  • childs play
  • china
  • Chinese
  • chips
  • chipset
  • choir
  • Cholesterol
  • chris claremont
  • chris matheson
  • christmas
  • christopher abbott
  • christopher nolan
  • chrome
  • Chromebooks
  • chucky
  • CineBeam
  • citadel
  • cities
  • city council meeting
  • civil liberties
  • Clarifying
  • class
  • classes
  • Classic
  • clean
  • Cleaning
  • clients
  • Climate
  • climate change
  • climate policy
  • clint barton
  • Clippers
  • clothing
  • cloud
  • cloud computing
  • cloud storage
  • Cloudflare
  • club pro+ tws
  • clusterfucks
  • coastal communities
  • Coaxing
  • cobra jet
  • cobra kai
  • cod
  • coffee
  • collaborative
  • college sports
  • Color
  • colorado
  • colors
  • comcast
  • Comey
  • comics
  • comixology
  • commerce
  • commerce department
  • common
  • commutes
  • company
  • competition
  • complaint
  • completely
  • complimentary
  • compound
  • Comprehensive
  • computational
  • computer
  • computer building
  • computers
  • concept art
  • concerning
  • confirmed
  • confirms
  • Connacht
  • connected home
  • connectedhome
  • consciousness
  • conservation
  • Conserve
  • conspiracies
  • conspirators
  • Constant
  • construct
  • Consume
  • consumer tech
  • contact tracing
  • contaminated
  • contamination
  • content moderation
  • continuous
  • contract
  • contractor
  • contractors
  • contracts
  • control
  • controller
  • convert
  • convertible
  • cooking
  • cops
  • cord cutters
  • cordless
  • coronavirus
  • corsair
  • cortisone
  • cosplay
  • costs
  • Could
  • countless
  • courts
  • covertly
  • covid 19
  • covid 19 reopening
  • COVID-
  • cpu
  • cpus
  • created
  • Creativity
  • Creed
  • creepypasta
  • crime
  • criteria
  • critical race theory
  • Croatia
  • cross-site tracking
  • crossover
  • crowdfunding
  • crunchyroll
  • crusher evo
  • Crysis
  • crystal dynamics
  • current
  • cx 400bt
  • CyberGhost
  • Cyberpunk
  • cybersecurity
  • cytokine
  • dangerous
  • daniel prude
  • dark shadows
  • dark web
  • darling
  • darpa
  • das
  • data
  • data portability
  • data privacy
  • data security
  • data transfer project
  • dating
  • david benioff
  • david polfeldt
  • davidbenioff
  • Daylight
  • daylight saving time
  • db weiss
  • dbweiss
  • dc
  • dc comics
  • dc fandome
  • ddos
  • ddos attacks
  • deadly
  • deals
  • dean parisot
  • death
  • debunks
  • debuts
  • Decades-old
  • Deciphering
  • decisions
  • declares
  • deep learning
  • deepfake
  • deepfakes
  • deepmind
  • DeepMind's
  • defending democracy program
  • deficiency
  • deforestation
  • del rey
  • delay
  • delays
  • deletes
  • deliveries
  • delivery
  • dell
  • dell deals
  • demanding
  • democratic party
  • demonstrate
  • demonstrates
  • Demonstrating
  • denim
  • Department
  • department of commerce
  • department of defense
  • Dependence
  • Depot
  • Depression
  • deron j powell
  • Descent
  • describes
  • design
  • designation
  • designers
  • details
  • detecting
  • detection
  • determine
  • dev patel
  • develop
  • developers
  • development
  • developmental
  • device
  • devices
  • dexamethasone
  • diabetes
  • Diabetes-in-a-dish
  • didn't
  • diesel
  • diets
  • differing
  • digital
  • digital cameras
  • digital diversions
  • Digital's
  • Dimensity
  • dinosaur
  • dipayan ghosh
  • direct
  • disabilities
  • disasters
  • Discord
  • discount
  • discover
  • discovered
  • Discovering
  • discovers
  • discovery
  • disenchantment
  • disney
  • disney plus
  • disney plus hotstar
  • disneyplus
  • display
  • displayhdr 600
  • Disrespect
  • dissociation
  • distance learning
  • ditch
  • Division
  • diy
  • dji
  • Djokovic
  • dlc
  • dlss
  • dna
  • do all the letters of the alphabet next you cowards
  • docs
  • dod
  • Dodder
  • doesn't
  • dogs
  • doing
  • doj
  • Dollars
  • dolphins
  • don mancini
  • don't
  • donald trump
  • donation
  • donnie yen
  • doom
  • doom eternal
  • doom ii
  • doometernal
  • doorbell
  • doorbell cams
  • doorbells
  • dorm
  • download
  • dragoncon
  • dragster
  • dramatically
  • dream edition
  • Dreamcast
  • drivers
  • driving
  • drone
  • drone delivery
  • drones
  • dropbox
  • drug-resistant
  • drugs
  • dryer
  • dual-screen
  • dune
  • dungeons and dragons
  • duo evo plus
  • Dynabook
  • dynamics
  • Dyson
  • dystopia
  • e-commerce
  • e-ink
  • e-mail
  • ea
  • earbuds
  • earlier
  • Earliest
  • Early
  • earth league international
  • earth observation
  • Earth's
  • easter
  • easter eggs
  • ecg
  • echo auto
  • echo buds
  • echoauto
  • ecofascism
  • economy
  • ed solomon
  • edgar wright
  • edge
  • Edinburgh
  • Edison
  • edison software
  • Edition
  • education
  • edward snowden
  • Effective
  • Elderly
  • election
  • election 2020
  • elections
  • electric
  • electric car
  • electric scooters
  • electric truck
  • electric vehicle
  • electrical
  • electrolyte
  • electron
  • electronic
  • electronic arts
  • electronic skin
  • elephant
  • elephants
  • elon musk
  • emails
  • embedded
  • Emergency
  • emissions
  • enables
  • enc
  • ending
  • endurance peak 2
  • endurance peak ii
  • energy
  • engadget podcast
  • engadgetdeals
  • engadgetpodcast
  • engadgetupscaled
  • Engineers
  • England
  • enhance
  • Enjoy
  • entertainment
  • Entry-level
  • environment
  • environmental protection agency
  • eoin colfer
  • epa
  • epic
  • epic games
  • epic vs apple
  • Epic’s
  • epicgames
  • episode
  • equipped
  • Erangel
  • eshop
  • espionage
  • esports
  • esportssg
  • establish
  • Estrogen
  • eta
  • Europe's
  • European
  • eurorack
  • euthanasia
  • euv
  • ev
  • Every
  • evictions
  • evidence
  • evolution
  • examines
  • excellent
  • exclusive
  • exercise
  • exist
  • expanded universe
  • expands
  • expensive
  • experience accessibility team
  • Experimental
  • explains
  • explorer project
  • export
  • exposure
  • exposure notification
  • extension
  • extinction
  • extreme e
  • extreme ultraviolet
  • extremee
  • exxon
  • exxonmobil
  • faa
  • face masks
  • face shields
  • facebook
  • facebook live
  • facebook wrote a press release
  • Facebook's
  • facilities
  • factors
  • failure
  • Failures
  • fainting
  • fake
  • fake events
  • fake news
  • fakes
  • falcon 9
  • fall 2020
  • fall guys
  • families
  • fascism
  • fast
  • fastest
  • Fastly
  • FAU-G
  • fbi
  • fcc
  • fda
  • FDA's
  • feature
  • federal communications commission
  • federalcommunicationscommission
  • fediverse
  • fedot tumusov
  • Felix
  • Females
  • femtech
  • fertility tech
  • fibre
  • Fidelio
  • Fidelity
  • fields
  • Figuring
  • film
  • finally
  • finally multicolor hue lightstrips
  • Finding
  • finds
  • Finest
  • fingerprint reader
  • fire tv
  • first
  • first amendment
  • fisa
  • fitbit
  • fitbit charge 4
  • fitness
  • fitness bands
  • fitness gear
  • fitness trackers
  • Fitter
  • five eyes
  • flash
  • flaunts
  • flexible
  • flexible display
  • Flight
  • flight simulator 2020
  • flint
  • flood
  • Floppy'
  • florida
  • flowering
  • flying car
  • flying taxis
  • fold 2
  • foldable
  • foldable phone
  • foldables
  • folding
  • Following
  • food
  • food justice
  • food security
  • Food-web
  • football
  • footwear
  • forces
  • forcibly
  • ford
  • fordpass
  • forecast
  • foreign
  • forests
  • Forget
  • fortnite
  • Fortnite's
  • Forty-Year-Old
  • Forward-thinking
  • forwarding limit
  • Fossil
  • fossils
  • found
  • fountain pens
  • fox news
  • fox soccer plus
  • France
  • fraud
  • free
  • free comics
  • free speech
  • free-to-play
  • freshwater
  • Friday
  • frontier
  • fuck fossil fuels
  • Fujifilm
  • full frame cameras
  • full-frame
  • Functions
  • Fungi
  • future
  • g-sync
  • g-sync ultimate
  • g9
  • gadgetry
  • gadgets
  • Galaxy
  • galaxy a42 5g
  • galaxy book flex
  • galaxy book flex 5g
  • galaxy buds plus
  • galaxy fit
  • galaxy fit 2
  • galaxy fold
  • galaxy s20
  • galaxy s20 fan edition
  • galaxy s20 ultra
  • galaxy tab a7
  • galaxy watch 3
  • galaxy z fold 2
  • galaxy z fold 2 5g
  • galaxy z fold2
  • galaxybookflex
  • galaxybookflex5g
  • gallery
  • game & watch
  • game boy
  • game of thrones
  • game-breaking
  • gameboy
  • gameofthrones
  • Gamers
  • games
  • Gamifying
  • gaming
  • gaming desktops
  • gaming gear
  • gaming laptop
  • gaming laptops
  • gaming monitor
  • gaming shelf
  • gas pump
  • gas station
  • gaspump
  • gasstation
  • gear
  • geforce
  • geforce rtx
  • geforce rtx 2060
  • geforce rtx 3080
  • geforcertx3080
  • gene kozicki
  • generous
  • Genes
  • Genetic
  • genetics
  • Genome
  • Genomic
  • Germany
  • Germany's
  • getting
  • getting out
  • giancarlo esposito
  • Giant
  • gig economy
  • gig workers
  • gizmos
  • glaciers
  • glitch
  • global tel link
  • Globalization
  • Gmail
  • go vacation
  • godzilla vs kong
  • gofundme
  • goltv
  • gong li
  • google
  • google ad policy
  • google ads
  • google assistant
  • google assistant snapshot
  • google chrome
  • google docs
  • google drive
  • google images
  • google kids space
  • google magenta
  • google maps
  • google play
  • google podcasts
  • Google's
  • googlekidsspace
  • gopro
  • gorilla glass
  • gotten
  • gpu
  • gpus
  • Graduate
  • Grand
  • grand central publishing
  • graphic neural network
  • graphically-impressive
  • graphics
  • graphics card
  • graphics cards
  • gravitational wave
  • Gravity
  • gravity waves
  • green drone
  • grills
  • groceries
  • growth
  • guidance
  • guidelines
  • guides
  • Guilt
  • Gulls
  • gwichin
  • hackers
  • hacking
  • hairdye
  • halloween
  • Handgrip
  • handing
  • handle
  • happens
  • happier
  • haptics
  • hard truths
  • harder
  • hardware
  • harvard
  • harvard university
  • harvarduniversity
  • hashes
  • Hastings
  • have your cake and eat it too
  • hawc
  • hawk rev vampire slayers
  • hawkeye
  • hbo
  • hbo max
  • hdr10+
  • headache
  • headed
  • headphones
  • headpohones
  • headset
  • headsets
  • health
  • Hearing
  • heart
  • heat wave
  • heat-free
  • Heavy
  • Hedge
  • heliophysics
  • hell to the no
  • hellfeed
  • hello games
  • Helminth
  • Helping
  • henry zaga
  • hepa
  • Here's
  • herman cain
  • heroes
  • hey email app
  • higher
  • highfire
  • hillary clinton
  • hints
  • hisense
  • history
  • hitting the books
  • hittingthebooks
  • holiday
  • holidays
  • home
  • home fitness
  • home schooling
  • home security
  • home theater
  • homepage
  • homepod
  • homesecurity
  • homework gap
  • honeybees
  • honeysuckle
  • honor
  • Honor's
  • horror
  • horsepower
  • Hostgator
  • hosting
  • hosts
  • hot toys
  • Hotspots'
  • hotstar
  • House
  • households
  • hp
  • hp deals
  • htc
  • Huawei
  • Hubble
  • hue play gradient
  • hugo weaving
  • human
  • Hunter
  • hunters
  • hurricane katrina
  • hurricane laura
  • hurricane season
  • hybrid
  • hypersonic
  • hypersonic missiles
  • hypertension
  • hyperx
  • Hyrule
  • i miss midi music
  • ian alexander
  • iap
  • ice ice maybe
  • ice on thin ice
  • Iceland
  • icloud
  • id software
  • id.4
  • ideas
  • Identification
  • identified
  • identify
  • idw
  • ifa
  • ifa 2020
  • ifa2020
  • ihome
  • ihome deals
  • imac
  • images
  • imitate
  • immunity
  • immuno-acceptance
  • immunotherapy
  • impacts
  • important
  • improved
  • Improving
  • in-app purchases
  • includes
  • income
  • incorrect
  • increase
  • increased
  • India
  • Indian
  • indie
  • individuals
  • indoor
  • inexpensive
  • Infants
  • infection
  • infections
  • infinity ward
  • Inflammation
  • influencer
  • influencers
  • Informing
  • informs
  • infotainment
  • Ingenious
  • initiation
  • injunction
  • Inkjet
  • Insect
  • Insight
  • Insights
  • insta360
  • insta360 one r
  • Instagram
  • instagram reels
  • instagram stories
  • installation
  • Instant
  • instant pot
  • instant pot smart wifi
  • instruments
  • insulin
  • integrated graphics
  • intel
  • intel core i9
  • intel deals
  • intel evo
  • intel xe graphics
  • intelevo
  • interact
  • interior
  • intermediate-mass black hole
  • intermittent computing
  • international
  • internet
  • internet archive
  • internet balloons
  • internet culture
  • internet research agency
  • interventions
  • interview
  • introduce
  • introduces
  • introducing
  • intrusive
  • invest
  • Investigational
  • investment
  • invests
  • invoice
  • ios
  • ios 13
  • ios 13.7
  • ios 14
  • ios13
  • ios14
  • iot
  • ip54
  • ipad
  • ipad air
  • ipad os 14
  • ipados14
  • iPhone
  • ipod
  • Islanders
  • isotope
  • israel
  • Italian
  • italy
  • items
  • its business time
  • japan
  • jason scott lee
  • jaxjox
  • jbl
  • jbl clip 4
  • jbl go 3
  • jbl partybox 310
  • jbl partybox on-the-go
  • jbl xtreme 3
  • JBL's
  • jeans
  • jedi
  • jeff bezos
  • jeff bond
  • jennifer jason leigh
  • jenny slate
  • jet li
  • jetpacks
  • jim butcher
  • JioFiber
  • jj abrams
  • joe biden
  • johnson johnson
  • jon favreau
  • jonathan majors
  • jordan eldredge
  • jordan peele
  • josh boone
  • josh guillory
  • journalism
  • juicer
  • july 4th
  • Jumping'
  • jumpstarts
  • jurassic world dominion
  • jurnee smollett
  • just transition
  • Justice
  • juul
  • jw nijman
  • jw rinzler
  • kamala harris
  • Karaoke
  • karate kid
  • kate bishop
  • kate bush
  • keanu reeves
  • Keeping
  • kenosha
  • kevin conway
  • keyboards
  • keystep
  • keystep pro
  • kick stage
  • Kidneys
  • kids
  • killer
  • king of sweden
  • kinja deals
  • konami
  • koofr
  • kotaku core
  • kotakucore
  • lab-grown
  • Labor
  • lafayette police chief scott morgan
  • laika
  • Lakers
  • lana wachowski
  • landlords
  • laptop
  • laptops
  • large attachments
  • largest
  • laser
  • laser tv
  • latest
  • launch
  • launch complex 2
  • launched
  • launches
  • laura ingraham
  • laurencefishburne
  • lawsuit
  • lawsuits
  • layout
  • leader
  • leading
  • leading-edge
  • League
  • league of legends
  • league of legends championship series
  • leak
  • leakages
  • Leaked
  • leaks
  • leaky buckets
  • learn
  • Legends
  • legion
  • legion slim 7i
  • Leinster
  • Lemonade
  • lenovo
  • lenovo legion 7
  • lenovo legion slim 7i
  • lenovo smart clock
  • lenovo smart clock essential
  • lenovo tab m10 hd gen 2
  • lenovo tab p11 pro
  • lenovo yoga
  • lenovo yoga 9i
  • leopard
  • lessen
  • letting
  • lev grossman
  • level
  • lewis hamilton
  • lg
  • lg deals
  • lg wing
  • lgbtq
  • license
  • licensing
  • lidar
  • lifestyle
  • light
  • Lightning
  • lightsabers
  • lightstrips
  • lightweight
  • ligo
  • linked
  • Links
  • Linux
  • lite
  • lithography
  • Little
  • liu cixin
  • liu yifei
  • liucixin
  • live
  • live sports
  • livestream
  • livestreaming
  • lo-fi
  • lo-fi player
  • local news
  • Locating
  • location
  • lockhart
  • lockheed martin
  • Loggerhead
  • logitech
  • logo
  • longread
  • looks
  • loon
  • loses
  • louisiana
  • lovecraft country
  • lovecraft country recaps
  • low-cost
  • Lowe's
  • lower ninth ward
  • lpddr5
  • lsc
  • lucasfilm
  • Lucid
  • lucid air
  • lucid motors
  • LucidLink
  • lucifer
  • Lumix
  • lutron
  • m night shyamalan
  • macbook air
  • macbook pro
  • mach 5
  • mach-e
  • machine learning
  • magenta
  • Magenta's
  • magicbook pro 16
  • mail
  • mail in ballots
  • mail-in voting
  • Mail's
  • maintain
  • maisie williams
  • makes
  • Making
  • malaria
  • males
  • Managing
  • Mandalorian
  • Mandalorian's
  • mandy patinkin
  • manipulated media
  • map
  • mapping
  • marijuana
  • marine
  • Mario
  • mario kart
  • mario kart live
  • mario kart live home circuit
  • mark zuckerberg
  • market
  • Marketing
  • martial arts
  • marvel
  • marvel cinematic universe
  • marvel comics
  • marvel studios
  • Marvel's
  • marvelentertainment
  • marvels avengers
  • masks
  • massive entertainment
  • massiveentertainment
  • mastodon
  • mastodons
  • MatePad
  • material
  • mathematical
  • Matric
  • matt ruff
  • matter
  • matterport
  • mattress
  • mattresses
  • mauritius
  • max-q
  • meat
  • mechanical
  • media
  • MediaTek
  • mediatonic
  • medicine
  • mega city one
  • mega-shark
  • meghan markle
  • meghanmarkle
  • meh deals
  • members
  • memes
  • memory
  • mental health
  • mentality
  • mergers and acquistions
  • messages
  • messenger
  • metadata
  • metal gear solid
  • Meteorite
  • method
  • metroid
  • miami
  • michael k williams
  • Microbes
  • microfiber
  • Microgel
  • Microsoft
  • microsoft edge
  • Microsoft's
  • mid-range
  • Middle
  • midi
  • midi controller
  • migrations
  • miir deals
  • military technology
  • militias
  • Millions
  • Minecraft–
  • Miniature
  • minimize
  • mining
  • mirrorless
  • mirrorless cameras
  • misha green
  • misinformation
  • mistakes
  • mite-y
  • mixed reality
  • mixes
  • mobil
  • mobile
  • Mobile's
  • model
  • model 3
  • model s
  • model x
  • model y
  • moderna
  • modification
  • mods
  • modular synthesizer
  • mojang
  • molecular
  • Molecule
  • monique candelaria
  • monitor
  • Monitoring
  • Monsters
  • months
  • moon
  • morally bankrupt exploitative shitbags
  • more oled laptops please
  • mortality
  • motherandroid
  • Motorola
  • motorola one
  • motorola one 5g
  • Motorola's
  • Motors
  • mouse
  • moveaudio s200
  • movie
  • movie theaters
  • movies
  • movies anywhere
  • mozilla firefox
  • mq direct deals
  • mr carey
  • msi
  • msi summit
  • msi summit series
  • MSI's
  • mulan
  • multiverses
  • Munster
  • Murray
  • museum
  • museums
  • music
  • music making
  • music quiz
  • musical instruments
  • Musk's
  • mustang
  • mustang mach-e
  • mutations
  • myneato
  • mystery
  • mystery jetpack
  • myths
  • naked
  • naming
  • Nanoearthquakes
  • nanomachine
  • nasa
  • national security agency
  • Nations
  • Natural
  • Nature
  • naughty dog
  • Neanderthals
  • neato
  • neato d10
  • neato d8
  • neato d9
  • nebraska
  • needs
  • Neglected
  • nemesis
  • neon
  • nest
  • nest hello
  • netflix
  • networks
  • neuralink
  • neurons
  • new mutants
  • new orleans
  • new swift 5 and swift 3 from acer
  • new tab page
  • new years eve
  • newegg
  • newegg deals
  • newest
  • Newly
  • news
  • newsletter
  • newyork
  • next-gen
  • nfl
  • nfl network
  • nfl redzone
  • ngo
  • nhra nationals
  • nhtsa
  • nick antosca
  • nickelodeon
  • nicolas cage
  • nike
  • nike deals
  • niki caro
  • ninebot
  • ninja
  • nintendo
  • nintendo switch
  • nintendo switch deals
  • no man's sky
  • no time to die
  • noah ringer
  • noise
  • noise cancelling
  • noise-canceling
  • Nokia
  • nokia 3310
  • Nominet
  • north korea
  • north pole
  • northern
  • nos4a2
  • nostalgia
  • not the fun jedi saga
  • notebook
  • notice
  • Novak
  • Novel
  • novels
  • nsa
  • nsa scandal
  • nubia watch
  • nubia watch review
  • Nuclear
  • Nuggets
  • nuke
  • Nurses
  • nvidai
  • nvidia
  • nvidia geforce
  • nvidia rtx 3070
  • nvidia rtx 3080
  • nvidia rtx 3090
  • Nvidia’s
  • nvidiageforce
  • nxtpaper
  • nyc
  • nypd
  • Ocean
  • oceans
  • oculus quest
  • offer
  • offered
  • offering
  • offers
  • official
  • oil and gas
  • oil spill
  • older
  • Olufsen's
  • olympics
  • on demand
  • oneplus
  • oneplus 7t
  • oneplus watch
  • online
  • OnlyFans
  • onmail
  • open the flood gates
  • opens
  • operating
  • Operation
  • opioids
  • Oracle
  • orbit
  • oregon trail
  • origami
  • origin
  • Orion
  • orion pictures
  • our garbage president
  • outage
  • outages
  • Outbreak
  • Overcast's
  • overheating
  • OVHcloud
  • oxygen
  • P-Series
  • pacemakers
  • packages
  • packs
  • paleontology
  • panasonic
  • panasonic lumix s5
  • Panasonic's
  • Pandemic
  • Panther
  • paper
  • paper based electronics
  • paramount
  • participate
  • partybox
  • pascal
  • patch
  • patent
  • Pattinson
  • pavement
  • paying
  • payments
  • paypal
  • pbug
  • pc
  • pc gaming
  • pco
  • peacock
  • Peculiar
  • peddling to nowhere
  • pedro pascal
  • peloton
  • penguin random house
  • pens
  • Pentagon
  • People
  • permafrost
  • permanent
  • permanently
  • permuted press
  • Personal
  • personal computing
  • personal data
  • personalization
  • petrochemicals
  • pfizer
  • Philips
  • philips hue
  • phone
  • phone cases
  • phone trees
  • phones
  • Photography
  • photon
  • Photos
  • pictures
  • pilot
  • pins
  • Pinterest
  • pinterest today
  • pique your interest
  • Pixel
  • plague rallies
  • planetary
  • planetary science
  • plans
  • Plant
  • plants
  • Plasmin
  • plastic
  • plastic pollution
  • platforms
  • play store
  • playstation
  • playstation 4
  • playstation 5
  • playstation vr
  • playstation4
  • playstationvr
  • please help my brain its very sick
  • please no
  • pleasure
  • plugin
  • poaching
  • poco x3
  • pocox3
  • podcast
  • podcasts
  • point-of-care
  • pokemon go
  • polar orbit
  • Polestar
  • polestar 2
  • police
  • police shootings
  • policy
  • Political
  • political ads
  • politics
  • Pollination
  • populations
  • porsche
  • Portable
  • portable speaker
  • portable speakers
  • portfolios
  • Portugal
  • possessor
  • Possible
  • Post-COVID
  • postal apocalypse
  • postal service
  • potential
  • powerful
  • powertrain
  • practical magic
  • pre-order
  • Predator
  • predator x25
  • predict
  • predictions
  • pregnancy
  • pregnancy tests
  • prehistoric
  • premier access
  • Premiere
  • premium
  • preorder
  • preorders
  • prepared
  • presents
  • president
  • president trump
  • presige 14 evo
  • pressure cooker
  • pressure-lowering
  • presumably
  • Preventing
  • preview
  • price
  • price drop
  • prices
  • primal
  • Prime
  • prime air
  • prime deliveries
  • prime gaming
  • prime video
  • prince harry
  • princeharry
  • principles
  • print
  • printer
  • Prior
  • prison phone app
  • privacy
  • privacy and security
  • problems
  • processor
  • processors
  • product
  • Products
  • Program
  • programs
  • prohibited
  • project
  • project 10 million
  • project athena
  • projector
  • projectors
  • proof
  • Proposed
  • props
  • propulsion
  • prosthetics
  • protein
  • protests
  • prototype
  • provide
  • ps plus
  • ps vr
  • ps1
  • ps2
  • ps3
  • ps4
  • ps5
  • psvr
  • pubg
  • pubg corporation
  • pubg mobile
  • pubg mobile nordic map
  • pubgmsg
  • purchase
  • purchased
  • purdue university
  • putting
  • pxo
  • qanon
  • qopy notes
  • quadruple
  • Qualcomm
  • qualcomm snapdragon
  • qualcomm snapdragon 8cx gen 2
  • Qualcomm's
  • quantum
  • quarter mile
  • quicker
  • quickly
  • quoll
  • quote
  • quote tweet
  • race
  • race car
  • racing
  • racism
  • Radiocarbon
  • Radiologists
  • Raised
  • ralph macchio
  • ram
  • rami ismail
  • RAMPOW
  • randomised
  • Raptors
  • rare earth metals
  • ray-tracing
  • raytheon
  • raytracing
  • razer
  • razer blade 15
  • razer deals
  • Razer's
  • razr
  • razr 2
  • reaches
  • readily
  • real estate
  • reality
  • Realme
  • realtor
  • recent
  • recipe
  • recommended reading
  • record
  • recreading
  • redesign
  • Redmi
  • reels
  • reface
  • reflex
  • reflex latency analyzer
  • refresh rate
  • Regional
  • regulates
  • regulating
  • regulation
  • reinfection
  • release
  • release date
  • released
  • releasedate
  • releases
  • releasing
  • relic
  • reliever
  • relocation
  • remain
  • remote
  • remote learning
  • remote vehicle setup
  • remove
  • removed
  • renewable energy
  • rental
  • repair
  • Report
  • reportedly
  • reporting
  • representation
  • reproductive health
  • reproductive justice
  • Republican
  • republicans
  • Research
  • Researchers
  • resembles
  • reset
  • resignation
  • resolution
  • Resource
  • respiratory
  • response
  • restriction
  • retail
  • Retest
  • retro
  • retro gaming
  • return
  • return of the jedi
  • retweet
  • retweet with comment
  • reunite
  • reusable
  • reusable spacecraft
  • revealed
  • reveals
  • Revel
  • reverse engineering
  • review
  • reviews
  • Revolt
  • reweaving
  • rexlex
  • rhythm
  • rian johnson
  • rianjohnson
  • richard branson
  • richard donner
  • rick snyder
  • right
  • right wing extremism
  • ring
  • riot games
  • rip
  • risks
  • rival
  • riverdale
  • rmit university
  • roadmap
  • roads
  • roav
  • roav deals
  • Robert
  • robert pattinson
  • robert reiner
  • robin wright
  • robot
  • robotic
  • robotic vacuum
  • robots
  • rocket
  • rocket lab
  • rocket league
  • rockets
  • room
  • room 104
  • rosamund pike
  • rosamundpike
  • rough
  • routes
  • royal family
  • royalfamily
  • rtx
  • rtx 30 series
  • rtx 3000
  • rtx 3070
  • rtx 3080
  • rtx 3090
  • rumor
  • rumors
  • running
  • rupert murdoch
  • rural
  • russia
  • s1
  • safety
  • sales
  • samara weaving
  • samsung
  • samsung deals
  • samsung galaxy fit2
  • samsung unpacked
  • Samsung's
  • san francisco
  • sandragon 8cx
  • Santana
  • sars cov 2
  • satechi
  • satellite
  • satellites
  • saucy nugs
  • savings
  • scam
  • scams
  • scandals
  • scanwatch
  • school
  • schools
  • sci fi
  • science
  • Scientist
  • scientists
  • scorched
  • score
  • scott pruitt
  • scream 5
  • screen
  • screen pass
  • sd-03
  • Seagate
  • sean bean
  • sean murray
  • seanan mcguire
  • season
  • section 702
  • security
  • sedan
  • seeds
  • sega
  • segway
  • segway es2
  • select
  • self-centered
  • self-driving
  • self-organizing
  • sells
  • semi-autonomous
  • Sennheiser
  • sensing
  • sensor
  • September
  • sequencer
  • sequencing
  • Serena
  • Serengeti
  • Series
  • series 3
  • services
  • Severe
  • Shade
  • Shadowlands
  • shares
  • sharing
  • shenmue
  • shenmue 3
  • shield
  • shopping
  • short-throw projector
  • shortcut
  • shortcuts
  • shows
  • shudder
  • shut up and take my money
  • siberia
  • sick days
  • side deal deals
  • sidedeals
  • sights
  • signs
  • Silicon
  • Silver
  • simply
  • simulating
  • simulation
  • singapore
  • singing
  • sinkholes
  • skin
  • skullcandy
  • skydrive
  • skyscraper
  • slack
  • sleep
  • small
  • smart
  • smart clock
  • smart glasses
  • smart home
  • smart homes
  • smart lighting
  • smart lights
  • smart lock
  • smart speakers
  • smarthome
  • smartlighting
  • smartlock
  • smartphone
  • smartphones
  • smartwatch
  • smartwatches
  • smic
  • smoker
  • smoking
  • snapdragon
  • snapdragon 732g
  • snapdragon 765
  • snapdragon 8cx
  • snapdragon 8cx gen 2
  • social distancing
  • social life
  • social media
  • social media mistakes
  • social network
  • social networking
  • sociology
  • software
  • solar
  • solo pro
  • solve
  • Songbirds
  • Sonos
  • sony
  • Sony's
  • soundbar
  • south korea
  • southern route
  • space
  • space race
  • spacecraft
  • spaceflight
  • spacelopnik
  • spaceshiptwo
  • SpaceX
  • Spain
  • sparks
  • speaker
  • speakers
  • Special
  • species
  • specifications
  • spectre x360 13
  • speed
  • spent
  • spike
  • split inbox
  • split-second
  • Splitting
  • sports
  • sports plus
  • Spotify-owned
  • spread
  • sputnik v
  • square enix
  • st patricks day
  • stadia
  • Stage
  • stanford university
  • star trek
  • star trek 4
  • star trek discovery
  • star trek the motion picture
  • star trek the motion pictureinside the art and visual effects
  • star wars
  • star wars galaxys edge
  • star wars rebels
  • star wars the high republic
  • star wars the last jedi
  • star wars the rise of skywalker
  • Starlink
  • starlink hits streaming milestone
  • starship
  • start
  • starts
  • starwars
  • state
  • states
  • stationary
  • stationary bike
  • statistics
  • steady
  • stealth 15m
  • Steam
  • steelseries
  • stephen hawking
  • steroids
  • steven spielberg
  • stick
  • stop-motion animation
  • store
  • stories
  • story
  • stranger things
  • stream
  • streaming
  • streaming video
  • streaming wars
  • strength
  • Stress
  • Strix
  • Strokes
  • Strong
  • Structural
  • Structure
  • student
  • Study
  • sturgis
  • sub-6
  • subscription codes
  • subsurface oceans
  • subterranean oceans
  • Subtypes
  • success
  • suffering
  • suicide
  • suicide prevention
  • suited
  • summit b
  • summit e
  • summit series
  • sunglasses
  • sunlight
  • sunrise movement
  • sunscreen
  • Super
  • super bomberman r
  • super bomberman r online
  • super mario
  • super mario 3d all-stars
  • super mario 3d world
  • super mario 64
  • super mario all-stars
  • super mario bros.
  • super mario bros. 35
  • super mario galaxy
  • super mario sunshine
  • super typhoons
  • superlist
  • superman and lois
  • superpowers
  • SuperTank
  • supplier
  • support
  • supposedly
  • Supra
  • Surface
  • surface duo
  • surprise
  • surprising
  • surveillance
  • susanna clarke
  • suv
  • swamp thing
  • sweden
  • Swift
  • swift 3
  • swift 5
  • swift3
  • switch
  • switch online
  • syfy
  • syndrome
  • synth
  • synthesizer
  • Synthetic
  • T-Mobile
  • T-Mobile's
  • tablet
  • tabletop games
  • tablets
  • take-two interactive
  • takes
  • taobao
  • tar
  • taser
  • tattoo
  • taxes
  • taycan
  • taycan cross turismo
  • tcl
  • tcl nxtpaper
  • TCL's
  • team joe
  • Team's
  • TeamGroup
  • tease
  • tech policy
  • technique
  • technology
  • TechRadar's
  • teenage engineering
  • Teenagers
  • telecoms
  • telemate
  • TELEVISION
  • telmate
  • Tencent
  • tencent games
  • Tenet
  • terms
  • terms of disservice
  • tesla
  • test flight
  • testbed
  • testing
  • tetris
  • texas
  • text-to-speech
  • textlies
  • thanks
  • that's
  • the 100
  • the amazon is burning at an alarming rate
  • the avengers
  • the batman
  • the best keyboards
  • the best of gizmodo
  • the best stories of the week
  • the best tech for remote learning
  • the boys
  • the descent
  • the division 2
  • the dream architects
  • the engadget podcast
  • the goonies
  • the host
  • the last campfire
  • the last of us
  • the last of us part ii
  • the magicians
  • the mandalorian
  • the matrix
  • the matrix 4
  • the multivorce
  • the new mutants
  • the premiere
  • the princess bride
  • the riddler
  • the silver arrow
  • the sims
  • the three-body problem
  • the walking dead
  • the witcher 3
  • thebuyersguide
  • thedivision2
  • theengadgetpodcast
  • themandalorian
  • theme partks
  • themorningafter
  • theory
  • Therapeutic
  • therapy
  • There
  • There's
  • These
  • thethreebodyproblem
  • they call it global warming for a reason
  • they cloned tyrone
  • things
  • think
  • third
  • this is not the future
  • thom browne
  • Thousands
  • thps
  • thq
  • thrawn
  • thrawn ascendancy chaos rising
  • threatening
  • Three
  • Throne
  • throwing
  • TicWatch
  • Tiger
  • tiger lake
  • tiktok
  • tim sweeney
  • Time's
  • timothy olyphant
  • timothy zahn
  • titan books
  • Today
  • Today's
  • toilets
  • tokyo olympics
  • tomorrow
  • tony hawk
  • tony hawk's pro skater
  • tools
  • totally
  • toyota
  • track
  • tracy deonn
  • trade
  • trade war
  • traffic
  • trailers
  • trainees
  • transfer
  • transit
  • transmission
  • transportation
  • trayford pellerin
  • tread
  • treadmill
  • treat
  • treatment
  • trees
  • trending topic
  • treyarch
  • trials
  • tricks
  • tripled
  • trivia
  • true wireless
  • true wireless earbuds
  • truestrike
  • trump
  • trump administration
  • trump rallies
  • Trump's
  • trumps america
  • tucker carlson
  • tumors
  • Tungsten
  • turing
  • turned
  • turntables
  • turtles
  • tv
  • tvs
  • tweets
  • twist
  • twitch
  • twitch sings
  • twitter
  • typhoons
  • typical
  • uber
  • Ubisoft
  • Ubisoft's
  • ufc
  • ufc 4
  • ula
  • Ulster
  • Ultra
  • ultra short throw projector
  • Ultrabooks
  • ultraportables
  • unboxing
  • Uncategorized @hi
  • Unconventional
  • uncover
  • Uncovering
  • under-display
  • understanding
  • unexpected
  • unfair
  • unfiltered
  • unintentionally
  • Unique
  • United
  • united launch alliance
  • united nations
  • unlock
  • unprecedented
  • unreal engine
  • unveils
  • upcoming
  • Update
  • upgrade
  • upper
  • us air force
  • us military
  • usda
  • user data
  • user review
  • user review roundup
  • user reviews
  • userreview
  • userreviewroundup
  • userreviews
  • users
  • Using
  • usps
  • ust
  • vacation
  • vaccine
  • Vaccines
  • vacuum
  • valentines day
  • validates
  • valve
  • vanderbilt university
  • vantrue
  • vaping
  • variations
  • vava
  • vava deals
  • vehicle
  • vehicles
  • Velour
  • Venom
  • verizon
  • version 1.7.14.0
  • vertical
  • vesa
  • vfx
  • vibert thio
  • vicarious visions
  • victoria
  • victorian police
  • videgames
  • video
  • video authenticator
  • video cards
  • video games
  • video streaming
  • videocards
  • videos
  • vinyl
  • viral videos
  • virgin galactic
  • virginia
  • Virgo
  • virtual
  • virtual reality
  • virtual showroom
  • virtual tour
  • Viruses
  • visually impaired
  • Vitamin
  • Vizio
  • vlambeer
  • vlogging
  • vod
  • voice acting
  • voice assistant
  • Volkswagen
  • volta zero
  • voting
  • voting information center
  • vr
  • vr gaming
  • vrgaming
  • vss unity
  • vulnerable
  • wakanda
  • wallops island
  • wally wingert
  • Walmart
  • walmart is coming
  • wanted pinkertons
  • wants
  • Warcraft
  • warner bros
  • Warriors
  • Wasps
  • watch
  • watch es
  • watch gs pro
  • watch it nerds
  • watch parties
  • watches
  • water
  • water resistant
  • waze
  • wearable
  • wearables
  • weather
  • weather is happening
  • web
  • web browsers
  • web tracking
  • webcams
  • weber
  • weber smokefire ex4
  • weber smokefire ex4 review
  • website
  • weed
  • weeklydeals
  • weigh
  • Weight
  • Welcome
  • wernher von braun
  • West'
  • western
  • western digital
  • western digital deals
  • whales
  • What's
  • whatever
  • WhatsApp
  • Where
  • Which
  • white house
  • white privilege
  • whole foods market
  • why is it always florida
  • widescreen
  • wifi
  • wifi 6
  • wifi smart lock
  • wifi6
  • wikipedia
  • wildfire season is year round now
  • wildfires
  • wildleaks
  • wildlife
  • william zabka
  • Williams
  • winamp skin museum
  • windows
  • windows 10
  • windows 95
  • windows on arm
  • wing
  • winner
  • winning
  • wireless
  • wireless headphones
  • wisconsin
  • wishes
  • Witcher
  • withdraws
  • withings
  • withings scanwatch
  • Wolves
  • Women
  • won't
  • wonder woman 1984
  • woodpeckers
  • Wool-like
  • WordPress
  • working
  • workout
  • workplace
  • workstation
  • World
  • world health organization
  • world's
  • worsens
  • worst
  • worth
  • writing
  • Wrong-way'
  • wynonna earp
  • x men
  • X-ray
  • x3
  • x44
  • xbox
  • xbox deals
  • xbox live gold
  • xbox series s
  • xbox series x
  • Xiaomi
  • Xiaomi's
  • Xperia
  • xperia 5 ii
  • xps 13
  • Yahoo
  • years
  • Yellowstone
  • yoda
  • yoga
  • yoson an
  • you get a laptop and you get a laptop
  • you're
  • youku
  • Young
  • your news update
  • youtube
  • youtube tv
  • yu suzuki
  • yummy
  • yves maitre
  • z
  • zack snyder
  • zenbook 13
  • zenbook flip 13
  • zenbook flip s
  • zenbook s
  • Zendure
  • Zenfone
  • zimbabwe
  • zombies
  • Zooming
  • zte
  • zuko

Advertise

Contact us

Follow Us

Recent News

Poco C3 to Feature 13-Megapixel Triple Rear Camera Setup, Up to 4GB RAM

Poco C3 to Feature 13-Megapixel Triple Rear Camera Setup, Up to 4GB RAM

October 3, 2020
Know About Gandhi jayanti 2020: etihaas, mahatv

Know About Gandhi jayanti 2020: etihaas, mahatv

October 1, 2020

जिज्ञासा ज़रूरी है इसीलिए हम आपको देंगे जानकारी जो आपकी जिज्ञासा की प्यास को बुझा देगी
© JIGYAASA.IN

No Result
View All Result
  • Home

© 2020 JIGYAASA.IN