Jigyaasa
  • Home
No Result
View All Result
Jigyaasa
  • Home
No Result
View All Result
Jigyaasa
No Result
View All Result

How to Use StandardScaler and MinMaxScaler Transforms in Python

Subhanshu Singh by Subhanshu Singh
June 25, 2020
in Artificial Intelligence
0
how-to-use-standardscaler-and-minmaxscaler-transforms-in-python
0
VIEWS
Share on FacebookShare on Twitter

Many machine learning algorithms perform better when numerical input variables are scaled to a standard range.

This includes algorithms that use a weighted sum of the input, like linear regression, and algorithms that use distance measures, like k-nearest neighbors.

The two most popular techniques for scaling numerical data prior to modeling are normalization and standardization. Normalization scales each input variable separately to the range 0-1, which is the range for floating-point values where we have the most precision. Standardization scales each input variable separately by subtracting the mean (called centering) and dividing by the standard deviation to shift the distribution to have a mean of zero and a standard deviation of one.

In this tutorial, you will discover how to use scaler transforms to standardize and normalize numerical input variables for classification and regression.

After completing this tutorial, you will know:

  • Data scaling is a recommended pre-processing step when working with many machine learning algorithms.
  • Data scaling can be achieved by normalizing or standardizing real-valued input and output variables.
  • How to apply standardization and normalization to improve the performance of predictive modeling algorithms.

Let’s get started.

How to Use StandardScaler and MinMaxScaler Transforms

How to Use StandardScaler and MinMaxScaler Transforms

Photo by Marco Verch, some rights reserved.

Tutorial Overview

This tutorial is divided into six parts; they are:

  1. The Scale of Your Data Matters
  2. Numerical Data Scaling Methods
    1. Data Normalization
    2. Data Standardization
  3. Sonar Dataset
  4. MinMaxScaler Transform
  5. StandardScaler Transform
  6. Common Questions

The Scale of Your Data Matters

Machine learning models learn a mapping from input variables to an output variable.

As such, the scale and distribution of the data drawn from the domain may be different for each variable.

Input variables may have different units (e.g. feet, kilometers, and hours) that, in turn, may mean the variables have different scales.

Differences in the scales across input variables may increase the difficulty of the problem being modeled. An example of this is that large input values (e.g. a spread of hundreds or thousands of units) can result in a model that learns large weight values. A model with large weight values is often unstable, meaning that it may suffer from poor performance during learning and sensitivity to input values resulting in higher generalization error.

One of the most common forms of pre-processing consists of a simple linear rescaling of the input variables.

— Page 298, Neural Networks for Pattern Recognition, 1995.

This difference in scale for input variables does not affect all machine learning algorithms.

For example, algorithms that fit a model that use a weighted sum of input variables are affected, such as linear regression, logistic regression, and artificial neural networks (deep learning).

For example, when the distance or dot products between predictors are used (such as K-nearest neighbors or support vector machines) or when the variables are required to be a common scale in order to apply a penalty, a standardization procedure is essential.

— Page 124, Feature Engineering and Selection, 2019.

Also, algorithms that use distance measures between examples or exemplars are affected, such as k-nearest neighbors and support vector machines. There are also algorithms that are unaffected by the scale of numerical input variables, most notably decision trees and ensembles of trees, like random forest.

Different attributes are measured on different scales, so if the Euclidean distance formula were used directly, the effect of some attributes might be completely dwarfed by others that had larger scales of measurement. Consequently, it is usual to normalize all attribute values …

— Page 145, Data Mining: Practical Machine Learning Tools and Techniques, 2016.

It can also be a good idea to scale the target variable for regression predictive modeling problems to make the problem easier to learn, most notably in the case of neural network models. A target variable with a large spread of values, in turn, may result in large error gradient values causing weight values to change dramatically, making the learning process unstable.

Scaling input and output variables is a critical step in using neural network models.

In practice, it is nearly always advantageous to apply pre-processing transformations to the input data before it is presented to a network. Similarly, the outputs of the network are often post-processed to give the required output values.

— Page 296, Neural Networks for Pattern Recognition, 1995.

Numerical Data Scaling Methods

Both normalization and standardization can be achieved using the scikit-learn library.

Let’s take a closer look at each in turn.

Data Normalization

Normalization is a rescaling of the data from the original range so that all values are within the new range of 0 and 1.

Normalization requires that you know or are able to accurately estimate the minimum and maximum observable values. You may be able to estimate these values from your available data.

Attributes are often normalized to lie in a fixed range — usually from zero to one—by dividing all values by the maximum value encountered or by subtracting the minimum value and dividing by the range between the maximum and minimum values.

— Page 61, Data Mining: Practical Machine Learning Tools and Techniques, 2016.

A value is normalized as follows:

  • y = (x – min) / (max – min)

Where the minimum and maximum values pertain to the value x being normalized.

For example, for a dataset, we could guesstimate the min and max observable values as 30 and -10. We can then normalize any value, like 18.8, as follows:

  • y = (x – min) / (max – min)
  • y = (18.8 – (-10)) / (30 – (-10))
  • y = 28.8 / 40
  • y = 0.72

You can see that if an x value is provided that is outside the bounds of the minimum and maximum values, the resulting value will not be in the range of 0 and 1. You could check for these observations prior to making predictions and either remove them from the dataset or limit them to the pre-defined maximum or minimum values.

You can normalize your dataset using the scikit-learn object MinMaxScaler.

Good practice usage with the MinMaxScaler and other scaling techniques is as follows:

  • Fit the scaler using available training data. For normalization, this means the training data will be used to estimate the minimum and maximum observable values. This is done by calling the fit() function.
  • Apply the scale to training data. This means you can use the normalized data to train your model. This is done by calling the transform() function.
  • Apply the scale to data going forward. This means you can prepare new data in the future on which you want to make predictions.

The default scale for the MinMaxScaler is to rescale variables into the range [0,1], although a preferred scale can be specified via the “feature_range” argument and specify a tuple, including the min and the max for all variables.

We can demonstrate the usage of this class by converting two variables to a range 0-to-1, the default range for normalization. The first variable has values between about 4 and 100, the second has values between about 0.1 and 0.001.

The complete example is listed below.

# example of a normalization

from numpy import asarray

from sklearn.preprocessing import MinMaxScaler

# define data

data = asarray([[100, 0.001],

[8, 0.05],

[50, 0.005],

[88, 0.07],

[4, 0.1]])

print(data)

# define min max scaler

scaler = MinMaxScaler()

# transform data

scaled = scaler.fit_transform(data)

print(scaled)

Running the example first reports the raw dataset, showing 2 columns with 4 rows. The values are in scientific notation which can be hard to read if you’re not used to it.

Next, the scaler is defined, fit on the whole dataset and then used to create a transformed version of the dataset with each column normalized independently. We can see that the largest raw value for each column now has the value 1.0 and the smallest value for each column now has the value 0.0.

[[1.0e+02 1.0e-03]

[8.0e+00 5.0e-02]

[5.0e+01 5.0e-03]

[8.8e+01 7.0e-02]

[4.0e+00 1.0e-01]]

[[1.         0.        ]

[0.04166667 0.49494949]

[0.47916667 0.04040404]

[0.875      0.6969697 ]

[0.         1.        ]]

Now that we are familiar with normalization, let’s take a closer look at standardization.

Data Standardization

Standardizing a dataset involves rescaling the distribution of values so that the mean of observed values is 0 and the standard deviation is 1.

This can be thought of as subtracting the mean value or centering the data.

Like normalization, standardization can be useful, and even required in some machine learning algorithms when your data has input values with differing scales.

Standardization assumes that your observations fit a Gaussian distribution (bell curve) with a well-behaved mean and standard deviation. You can still standardize your data if this expectation is not met, but you may not get reliable results.

Another […] technique is to calculate the statistical mean and standard deviation of the attribute values, subtract the mean from each value, and divide the result by the standard deviation. This process is called standardizing a statistical variable and results in a set of values whose mean is zero and standard deviation is one.

— Page 61, Data Mining: Practical Machine Learning Tools and Techniques, 2016.

Standardization requires that you know or are able to accurately estimate the mean and standard deviation of observable values. You may be able to estimate these values from your training data, not the entire dataset.

Again, it is emphasized that the statistics required for the transformation (e.g., the mean) are estimated from the training set and are applied to all data sets (e.g., the test set or new samples).

— Page 124, Feature Engineering and Selection, 2019.

Subtracting the mean from the data is called centering, whereas dividing by the standard deviation is called scaling. As such, the method is sometime called “center scaling“.

The most straightforward and common data transformation is to center scale the predictor variables. To center a predictor variable, the average predictor value is subtracted from all the values. As a result of centering, the predictor has a zero mean. Similarly, to scale the data, each value of the predictor variable is divided by its standard deviation. Scaling the data coerce the values to have a common standard deviation of one.

— Page 30, Applied Predictive Modeling, 2013.

A value is standardized as follows:

  • y = (x – mean) / standard_deviation

Where the mean is calculated as:

  • mean = sum(x) / count(x)

And the standard_deviation is calculated as:

  • standard_deviation = sqrt( sum( (x – mean)^2 ) / count(x))

We can guesstimate a mean of 10.0 and a standard deviation of about 5.0. Using these values, we can standardize the first value of 20.7 as follows:

  • y = (x – mean) / standard_deviation
  • y = (20.7 – 10) / 5
  • y = (10.7) / 5
  • y = 2.14

The mean and standard deviation estimates of a dataset can be more robust to new data than the minimum and maximum.

You can standardize your dataset using the scikit-learn object StandardScaler.

We can demonstrate the usage of this class by converting two variables to a range 0-to-1 defined in the previous section. We will use the default configuration that will both center and scale the values in each column, e.g. full standardization.

The complete example is listed below.

# example of a standardization

from numpy import asarray

from sklearn.preprocessing import StandardScaler

# define data

data = asarray([[100, 0.001],

[8, 0.05],

[50, 0.005],

[88, 0.07],

[4, 0.1]])

print(data)

# define standard scaler

scaler = StandardScaler()

# transform data

scaled = scaler.fit_transform(data)

print(scaled)

Running the example first reports the raw dataset, showing 2 columns with 4 rows as before.

Next, the scaler is defined, fit on the whole dataset and then used to create a transformed version of the dataset with each column standardized independently. We can see that the mean value in each column is assigned a value of 0.0 if present and the values are centered around 0.0 with values both positive and negative.

[[1.0e+02 1.0e-03]

[8.0e+00 5.0e-02]

[5.0e+01 5.0e-03]

[8.8e+01 7.0e-02]

[4.0e+00 1.0e-01]]

[[ 1.26398112 -1.16389967]

[-1.06174414  0.12639634]

[ 0.         -1.05856939]

[ 0.96062565  0.65304778]

[-1.16286263  1.44302493]]

Next, we can introduce a real dataset that provides the basis for applying normalization and standardization transforms as a part of modeling.

Sonar Dataset

The sonar dataset is a standard machine learning dataset for binary classification.

It involves 60 real-valued inputs and a two-class target variable. There are 208 examples in the dataset and the classes are reasonably balanced.

A baseline classification algorithm can achieve a classification accuracy of about 53.4 percent using repeated stratified 10-fold cross-validation. Top performance on this dataset is about 88 percent using repeated stratified 10-fold cross-validation.

The dataset describes radar returns of rocks or simulated mines.

You can learn more about the dataset from here:

  • Sonar Dataset
  • Sonar Dataset Description

No need to download the dataset; we will download it automatically from our worked examples.

First, let’s load and summarize the dataset. The complete example is listed below.

# load and summarize the sonar dataset

from pandas import read_csv

from pandas.plotting import scatter_matrix

from matplotlib import pyplot

# Load dataset

url = “https://raw.githubusercontent.com/jbrownlee/Datasets/master/sonar.csv”

dataset = read_csv(url, header=None)

# summarize the shape of the dataset

print(dataset.shape)

# summarize each variable

print(dataset.describe())

# histograms of the variables

dataset.hist()

pyplot.show()

Running the example first summarizes the shape of the loaded dataset.

This confirms the 60 input variables, one output variable, and 208 rows of data.

A statistical summary of the input variables is provided showing that values are numeric and range approximately from 0 to 1.

(208, 61)

               0           1           2   …          57          58          59

count  208.000000  208.000000  208.000000  …  208.000000  208.000000  208.000000

mean     0.029164    0.038437    0.043832  …    0.007949    0.007941    0.006507

std      0.022991    0.032960    0.038428  …    0.006470    0.006181    0.005031

min      0.001500    0.000600    0.001500  …    0.000300    0.000100    0.000600

25%      0.013350    0.016450    0.018950  …    0.003600    0.003675    0.003100

50%      0.022800    0.030800    0.034300  …    0.005800    0.006400    0.005300

75%      0.035550    0.047950    0.057950  …    0.010350    0.010325    0.008525

max      0.137100    0.233900    0.305900  …    0.044000    0.036400    0.043900

[8 rows x 60 columns]

Finally, a histogram is created for each input variable.

If we ignore the clutter of the plots and focus on the histograms themselves, we can see that many variables have a skewed distribution.

The dataset provides a good candidate for using scaler transforms as the variables have differing minimum and maximum values, as well as different data distributions.

Histogram Plots of Input Variables for the Sonar Binary Classification Dataset

Histogram Plots of Input Variables for the Sonar Binary Classification Dataset

Next, let’s fit and evaluate a machine learning model on the raw dataset.

We will use a k-nearest neighbor algorithm with default hyperparameters and evaluate it using repeated stratified k-fold cross-validation. The complete example is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

# evaluate knn on the raw sonar dataset

from numpy import mean

from numpy import std

from pandas import read_csv

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.neighbors import KNeighborsClassifier

from sklearn.preprocessing import LabelEncoder

from matplotlib import pyplot

# load dataset

url = “https://raw.githubusercontent.com/jbrownlee/Datasets/master/sonar.csv”

dataset = read_csv(url, header=None)

data = dataset.values

# separate into input and output columns

X, y = data[:, :–1], data[:, –1]

# ensure inputs are floats and output is an integer label

X = X.astype(‘float32’)

y = LabelEncoder().fit_transform(y.astype(‘str’))

# define and configure the model

model = KNeighborsClassifier()

# evaluate the model

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

n_scores = cross_val_score(model, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1, error_score=‘raise’)

# report model performance

print(‘Accuracy: %.3f (%.3f)’ % (mean(n_scores), std(n_scores)))

Running the example evaluates a KNN model on the raw sonar dataset.

We can see that the model achieved a mean classification accuracy of about 79.7 percent, showing that it has skill (better than 53.4 percent) and is in the ball-park of good performance (88 percent).

Next, let’s explore a scaling transform of the dataset.

MinMaxScaler Transform

We can apply the MinMaxScaler to the Sonar dataset directly to normalize the input variables.

We will use the default configuration and scale values to the range 0 and 1. First, a MinMaxScaler instance is defined with default hyperparameters. Once defined, we can call the fit_transform() function and pass it to our dataset to create a transformed version of our dataset.

...

# perform a robust scaler transform of the dataset

trans = MinMaxScaler()

data = trans.fit_transform(data)

Let’s try it on our sonar dataset.

The complete example of creating a MinMaxScaler transform of the sonar dataset and plotting histograms of the result is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

# visualize a minmax scaler transform of the sonar dataset

from pandas import read_csv

from pandas import DataFrame

from pandas.plotting import scatter_matrix

from sklearn.preprocessing import MinMaxScaler

from matplotlib import pyplot

# load dataset

url = “https://raw.githubusercontent.com/jbrownlee/Datasets/master/sonar.csv”

dataset = read_csv(url, header=None)

# retrieve just the numeric input values

data = dataset.values[:, :–1]

# perform a robust scaler transform of the dataset

trans = MinMaxScaler()

data = trans.fit_transform(data)

# convert the array back to a dataframe

dataset = DataFrame(data)

# summarize

print(dataset.describe())

# histograms of the variables

dataset.hist()

pyplot.show()

Running the example first reports a summary of each input variable.

We can see that the distributions have been adjusted and that the minimum and maximum values for each variable are now a crisp 0.0 and 1.0 respectively.

               0           1           2   …          57          58          59

count  208.000000  208.000000  208.000000  …  208.000000  208.000000  208.000000

mean     0.204011    0.162180    0.139068  …    0.175035    0.216015    0.136425

std      0.169550    0.141277    0.126242  …    0.148051    0.170286    0.116190

min      0.000000    0.000000    0.000000  …    0.000000    0.000000    0.000000

25%      0.087389    0.067938    0.057326  …    0.075515    0.098485    0.057737

50%      0.157080    0.129447    0.107753  …    0.125858    0.173554    0.108545

75%      0.251106    0.202958    0.185447  …    0.229977    0.281680    0.183025

max      1.000000    1.000000    1.000000  …    1.000000    1.000000    1.000000

[8 rows x 60 columns]

Histogram plots of the variables are created, although the distributions don’t look much different from their original distributions seen in the previous section.

Histogram Plots of MinMaxScaler Transformed Input Variables for the Sonar Dataset

Histogram Plots of MinMaxScaler Transformed Input Variables for the Sonar Dataset

Next, let’s evaluate the same KNN model as the previous section, but in this case, on a MinMaxScaler transform of the dataset.

The complete example is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

# evaluate knn on the sonar dataset with minmax scaler transform

from numpy import mean

from numpy import std

from pandas import read_csv

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.neighbors import KNeighborsClassifier

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import MinMaxScaler

from sklearn.pipeline import Pipeline

from matplotlib import pyplot

# load dataset

url = “https://raw.githubusercontent.com/jbrownlee/Datasets/master/sonar.csv”

dataset = read_csv(url, header=None)

data = dataset.values

# separate into input and output columns

X, y = data[:, :–1], data[:, –1]

# ensure inputs are floats and output is an integer label

X = X.astype(‘float32’)

y = LabelEncoder().fit_transform(y.astype(‘str’))

# define the pipeline

trans = MinMaxScaler()

model = KNeighborsClassifier()

pipeline = Pipeline(steps=[(‘t’, trans), (‘m’, model)])

# evaluate the pipeline

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

n_scores = cross_val_score(pipeline, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1, error_score=‘raise’)

# report pipeline performance

print(‘Accuracy: %.3f (%.3f)’ % (mean(n_scores), std(n_scores)))

Running the example, we can see that the MinMaxScaler transform results in a lift in performance from 79.7 percent accuracy without the transform to about 81.3 percent with the transform.

Next, let’s explore the effect of standardizing the input variables.

StandardScaler Transform

We can apply the StandardScaler to the Sonar dataset directly to standardize the input variables.

We will use the default configuration and scale values to subtract the mean to center them on 0.0 and divide by the standard deviation to give the standard deviation of 1.0. First, a StandardScaler instance is defined with default hyperparameters.

Once defined, we can call the fit_transform() function and pass it to our dataset to create a transformed version of our dataset.

...

# perform a robust scaler transform of the dataset

trans = StandardScaler()

data = trans.fit_transform(data)

Let’s try it on our sonar dataset.

The complete example of creating a StandardScaler transform of the sonar dataset and plotting histograms of the results is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

# visualize a standard scaler transform of the sonar dataset

from pandas import read_csv

from pandas import DataFrame

from pandas.plotting import scatter_matrix

from sklearn.preprocessing import StandardScaler

from matplotlib import pyplot

# load dataset

url = “https://raw.githubusercontent.com/jbrownlee/Datasets/master/sonar.csv”

dataset = read_csv(url, header=None)

# retrieve just the numeric input values

data = dataset.values[:, :–1]

# perform a robust scaler transform of the dataset

trans = StandardScaler()

data = trans.fit_transform(data)

# convert the array back to a dataframe

dataset = DataFrame(data)

# summarize

print(dataset.describe())

# histograms of the variables

dataset.hist()

pyplot.show()

Running the example first reports a summary of each input variable.

We can see that the distributions have been adjusted and that the mean is a very small number close to zero and the standard deviation is very close to 1.0 for each variable.

                 0             1   …            58            59

count  2.080000e+02  2.080000e+02  …  2.080000e+02  2.080000e+02

mean  -4.190024e-17  1.663333e-16  …  1.283695e-16  3.149190e-17

std    1.002413e+00  1.002413e+00  …  1.002413e+00  1.002413e+00

min   -1.206158e+00 -1.150725e+00  … -1.271603e+00 -1.176985e+00

25%   -6.894939e-01 -6.686781e-01  … -6.918580e-01 -6.788714e-01

50%   -2.774703e-01 -2.322506e-01  … -2.499546e-01 -2.405314e-01

75%    2.784345e-01  2.893335e-01  …  3.865486e-01  4.020352e-01

max    4.706053e+00  5.944643e+00  …  4.615037e+00  7.450343e+00

[8 rows x 60 columns]

Histogram plots of the variables are created, although the distributions don’t look much different from their original distributions seen in the previous section other than their scale on the x-axis.

Histogram Plots of StandardScaler Transformed Input Variables for the Sonar Dataset

Histogram Plots of StandardScaler Transformed Input Variables for the Sonar Dataset

Next, let’s evaluate the same KNN model as the previous section, but in this case, on a StandardScaler transform of the dataset.

The complete example is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

# evaluate knn on the sonar dataset with standard scaler transform

from numpy import mean

from numpy import std

from pandas import read_csv

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.neighbors import KNeighborsClassifier

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from matplotlib import pyplot

# load dataset

url = “https://raw.githubusercontent.com/jbrownlee/Datasets/master/sonar.csv”

dataset = read_csv(url, header=None)

data = dataset.values

# separate into input and output columns

X, y = data[:, :–1], data[:, –1]

# ensure inputs are floats and output is an integer label

X = X.astype(‘float32’)

y = LabelEncoder().fit_transform(y.astype(‘str’))

# define the pipeline

trans = StandardScaler()

model = KNeighborsClassifier()

pipeline = Pipeline(steps=[(‘t’, trans), (‘m’, model)])

# evaluate the pipeline

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

n_scores = cross_val_score(pipeline, X, y, scoring=‘accuracy’, cv=cv, n_jobs=–1, error_score=‘raise’)

# report pipeline performance

print(‘Accuracy: %.3f (%.3f)’ % (mean(n_scores), std(n_scores)))

Running the example, we can see that the StandardScaler transform results in a lift in performance from 79.7 percent accuracy without the transform to about 81.0 percent with the transform, although slightly lower than the result using the MinMaxScaler.

Common Questions

This section lists some common questions and answers when scaling numerical data.

Q. Should I Normalize or Standardize?

Whether input variables require scaling depends on the specifics of your problem and of each variable.

You may have a sequence of quantities as inputs, such as prices or temperatures.

If the distribution of the quantity is normal, then it should be standardized, otherwise, the data should be normalized. This applies if the range of quantity values is large (10s, 100s, etc.) or small (0.01, 0.0001).

If the quantity values are small (near 0-1) and the distribution is limited (e.g. standard deviation near 1), then perhaps you can get away with no scaling of the data.

These manipulations are generally used to improve the numerical stability of some calculations. Some models […] benefit from the predictors being on a common scale.

— Pages 30-31, Applied Predictive Modeling, 2013.

Predictive modeling problems can be complex, and it may not be clear how to best scale input data.

If in doubt, normalize the input sequence. If you have the resources, explore modeling with the raw data, standardized data, and normalized data and see if there is a beneficial difference in the performance of the resulting model.

If the input variables are combined linearly, as in an MLP [Multilayer Perceptron], then it is rarely strictly necessary to standardize the inputs, at least in theory. […] However, there are a variety of practical reasons why standardizing the inputs can make training faster and reduce the chances of getting stuck in local optima.

— Should I normalize/standardize/rescale the data? Neural Nets FAQ

Q. Should I Standardize then Normalize?

Standardization can give values that are both positive and negative centered around zero.

It may be desirable to normalize data after it has been standardized.

This might be a good idea of you have a mixture of standardized and normalized variables and wish all input variables to have the same minimum and maximum values as input for a given algorithm, such as an algorithm that calculates distance measures.

Q. But Which is Best?

This is unknowable.

Evaluate models on data prepared with each transform and use the transform or combination of transforms that result in the best performance for your data set on your model.

Q. How Do I Handle Out-of-Bounds Values?

You may normalize your data by calculating the minimum and maximum on the training data.

Later, you may have new data with values smaller or larger than the minimum or maximum respectively.

One simple approach to handling this may be to check for such out-of-bound values and change their values to the known minimum or maximum prior to scaling. Alternately, you may want to estimate the minimum and maximum values used in the normalization manually based on domain knowledge.

Further Reading

This section provides more resources on the topic if you are looking to go deeper.

Tutorials

  • How to use Data Scaling Improve Deep Learning Model Stability and Performance
  • Rescaling Data for Machine Learning in Python with Scikit-Learn
  • 4 Common Machine Learning Data Transforms for Time Series Forecasting
  • How to Scale Data for Long Short-Term Memory Networks in Python
  • How to Normalize and Standardize Time Series Data in Python

Books

  • Neural Networks for Pattern Recognition, 1995.
  • Feature Engineering and Selection, 2019.
  • Data Mining: Practical Machine Learning Tools and Techniques, 2016.
  • Applied Predictive Modeling, 2013.

APIs

  • sklearn.preprocessing.MinMaxScaler API.
  • sklearn.preprocessing.StandardScaler API.

Articles

  • Should I normalize/standardize/rescale the data? Neural Nets FAQ

Summary

In this tutorial, you discovered how to use scaler transforms to standardize and normalize numerical input variables for classification and regression.

Specifically, you learned:

  • Data scaling is a recommended pre-processing step when working with many machine learning algorithms.
  • Data scaling can be achieved by normalizing or standardizing real-valued input and output variables.
  • How to apply standardization and normalization to improve the performance of predictive modeling algorithms.

Do you have any questions?


Ask your questions in the comments below and I will do my best to answer.

Tags: aiartificial intelligenceData Preparationmachine learning
Previous Post

How to Perform Feature Selection for Regression Data

Next Post

A furry social robot can reduce pain and increase happiness

Next Post

A furry social robot can reduce pain and increase happiness

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Category

  • -core
  • -inch
  • -year-old
  • 'anti-procrastination'
  • 'bang'
  • 'gold'
  • 'plug
  • 'Trending'
  • 0
  • 000 mah battery
  • 1
  • 10 billion dollars
  • 100gb
  • 11th gen
  • 1mii
  • 1mii deals
  • 2
  • 2-in-1
  • 2020 election
  • 2020 elections
  • 2020 presidential election
  • 20th century fox
  • 20th century studios
  • 2d
  • 2in1
  • 3.5 ghz
  • 35th
  • 360hz
  • 3d printing
  • 3dprinting
  • 4-series
  • 4k
  • 50 states of fright
  • 5g
  • 64-megapixel camera
  • 65
  • 8bitdo
  • 8k
  • a dark path
  • a10
  • a20
  • a20 gen 2
  • a40
  • a40tr
  • a50 wireless
  • abide
  • abortion
  • absentee ballots
  • Academy
  • acadiana mall
  • accelerated
  • accept sender
  • accepting
  • accessibility
  • accessibility center of excellence
  • acer
  • acer deals
  • acer spin 7
  • acerspin7
  • Acorn
  • action camera
  • action figures
  • active noise cancellation
  • Activision
  • activision blizzard
  • Activists
  • actually
  • ada
  • adam savage
  • addicted
  • administration
  • adobe
  • adopt
  • adrian smith
  • ads
  • adult swim
  • advanced optimus
  • advertising
  • affect
  • affordable
  • African
  • After
  • after math
  • aftermath
  • agriculture
  • ai
  • air carrier
  • air pollution
  • air quality
  • air travel
  • aircraft
  • AirDrop
  • airline
  • airplanes
  • airpods pro
  • airports
  • Airtel
  • ajit pai
  • alex winter
  • alexa
  • alexa for residential
  • alibaba
  • alice braga
  • alien addiction
  • aliens
  • Alienware
  • alienware 25
  • alienware 27
  • alienware 38
  • alienware deals
  • alipay
  • all up
  • all-electric
  • alphabay
  • alphabet
  • alter
  • Amateur
  • amazfit
  • amazing
  • amazon
  • amazon alexa
  • amazon deals
  • amazon echo
  • amazon flex
  • amazon pay
  • amazon prime
  • amazon prime air
  • amazon prime video
  • amazon.subtember
  • Amazon's
  • amazonalexa
  • amazonpay
  • Ambient
  • amd
  • AMD's
  • American
  • american horror story
  • Amnesia
  • Among
  • amongst
  • ampere
  • analysis
  • anarchists
  • anc
  • Ancient
  • andrea riseborough
  • andrea stewart
  • android
  • android 10
  • android auto
  • android automotive
  • android tablet
  • Android's
  • android10
  • androidtablet
  • animal crossing
  • animation
  • anime
  • anker
  • anker deals
  • annihilation
  • anniversary
  • announcements
  • announces
  • anode
  • Another
  • ant man 3
  • antenna
  • anthony carrigan
  • anti-cheat
  • anti-tracking
  • antibiotics
  • antibodies
  • antibody
  • anticipated
  • antifa
  • antitrust
  • Antiviral
  • antlers
  • anwr
  • anxiety
  • anxious
  • anya taylor joy
  • anyone
  • Aorus
  • apartments
  • apollo 11
  • apologizes
  • app
  • app store
  • apparel
  • appeals
  • apple
  • apple arcade
  • apple arm
  • apple deals
  • apple health
  • apple rumors
  • apple safari
  • apple silicon
  • apple store
  • apple tv
  • apple vs epic
  • apple watch
  • apple watch series 3
  • Apple's
  • application
  • approaching
  • approximately
  • apps
  • ar
  • Arcade
  • arcade stick
  • archives
  • arctic
  • arctic national wildlife refuge
  • area51m
  • argument
  • arm
  • arnold schwarzenneger
  • art gallery
  • artemis mission
  • Artificial Intelligence
  • arturia
  • asobo studio
  • asphalt
  • Assassin's
  • astro
  • astro gaming
  • Astro's
  • astrogaming
  • Astronomers
  • astronomy
  • Astrophysics
  • asus rog strix scar g15
  • asus rog strix scar g15 review
  • Asus'
  • at home fitness
  • at&t
  • atomic
  • attach
  • Attackers
  • Attacking
  • attempts
  • attorney general
  • auction
  • audible
  • audio
  • audiobooks
  • augmented reality
  • augmented reality glasses
  • august
  • august wifi smart lock
  • aukey
  • aukey deals
  • Aurora
  • australia
  • Australia's
  • Australian
  • australian police
  • Authenticator
  • Authorities
  • authors
  • autofocus
  • automation
  • Autonomous
  • autonomous vehicle
  • Autophagy
  • autopilot
  • autoplay
  • av
  • available
  • avatar the last airbender
  • Avengers
  • aviation
  • ayo edibiri
  • azula
  • babies
  • baby yoda
  • backhaul
  • backwards compatibility
  • bacteria
  • balloon
  • ban
  • barrierfree
  • bass
  • batman
  • batman the animated series
  • batmobile
  • batteries
  • battery
  • Battery-free
  • battle
  • battle royale
  • bay area
  • be prepared
  • Beating
  • beats
  • beats deals
  • beautiful
  • beauty
  • bedding
  • bedroom
  • beer
  • behavior
  • behind the scenes
  • Being
  • Belgian
  • believed
  • Bering
  • bering sea
  • best buy deals
  • best of gizmodo
  • beta
  • bethesda
  • bh deals
  • bh photo deals
  • bicycle
  • biden
  • biden-harris
  • big boys
  • big mouth
  • big oil
  • bigger
  • biggest
  • bike
  • bill and ted face the music
  • bill barr
  • bill sienkiewicz
  • billion
  • billy crystal
  • biocontainment
  • biodiversity
  • biohackers
  • biohacking
  • biological
  • bird box
  • Birds
  • bitcoin
  • Black
  • black christmas
  • black hole
  • black lives matter
  • black panther
  • black widow
  • Blade
  • blast
  • blink
  • blink indoor
  • blink outdoor
  • block
  • blocks
  • blogging
  • Blood
  • blood-clotting
  • blu de barrio
  • blu hunt
  • Blu-ray
  • bluetooth
  • bluetooth headphones
  • bluetooth speaker
  • bluetooth speakers
  • bmi
  • board games
  • boat parade
  • boats
  • bob mcleod
  • Bobble
  • bolsonaro
  • bomberman
  • boneless chicken wings
  • book review
  • books
  • bookshelf injection
  • boosts
  • bounce music
  • box office
  • boxes
  • boycott
  • Boyega
  • braille
  • brain
  • brain computer interface
  • brain computer interfaces
  • brain-machine interface
  • Brainstem
  • brand-new
  • branding
  • brandon cronenberg
  • brazil
  • breakdown
  • breaks
  • breast
  • brigette lundy paine
  • brings
  • broadband
  • broadcast
  • brookings institution press
  • brooklyn
  • browser
  • budget
  • budget laptops
  • bug
  • bug fixes
  • bugs
  • build
  • bulk collection
  • bulk data collection
  • bullshit resistance school
  • burned
  • burning
  • burrowing
  • business
  • business laptops
  • butterfly
  • buyers guide
  • bytedance
  • cadmium
  • cake
  • california
  • california wildfires
  • call of duty
  • call of duty black ops cold war
  • call of duty league
  • call of duty: warzone
  • called
  • callofduty
  • callofdutyblackopscoldwar
  • callofdutyleague
  • Calls
  • calltoaction
  • Cambrian
  • camera
  • cameras
  • campaign
  • campaign signs
  • Can't
  • cancer
  • cancer alley
  • canine
  • Canon
  • captain america
  • captions
  • capture
  • Capturing
  • carbon
  • carcinogens
  • cars
  • cartivator
  • cary elwes
  • cases
  • cassandra clare
  • catnap
  • cbs
  • cbs all access
  • cd projekt red
  • cdc
  • cdl
  • cdpr
  • celebrates
  • Cells
  • Celtics
  • censorship
  • century
  • centurylink
  • chadwick boseman
  • chair
  • chairs
  • chamois
  • Champion
  • Championship
  • chance
  • Change
  • changes
  • channel zero
  • charging stations
  • charity
  • charlie heaton
  • cheap
  • cheaper
  • cheapest
  • cheating
  • Check
  • checked
  • cher wang
  • chest
  • chicago
  • chicken wings
  • Children
  • childrens books
  • childs play
  • china
  • Chinese
  • chips
  • chipset
  • choir
  • Cholesterol
  • chris claremont
  • chris matheson
  • christmas
  • christopher abbott
  • christopher nolan
  • chrome
  • Chromebooks
  • chucky
  • CineBeam
  • citadel
  • cities
  • city council meeting
  • civil liberties
  • Clarifying
  • class
  • classes
  • Classic
  • clean
  • Cleaning
  • clients
  • Climate
  • climate change
  • climate policy
  • clint barton
  • Clippers
  • clothing
  • cloud
  • cloud computing
  • cloud storage
  • Cloudflare
  • club pro+ tws
  • clusterfucks
  • coastal communities
  • Coaxing
  • cobra jet
  • cobra kai
  • cod
  • coffee
  • collaborative
  • college sports
  • Color
  • colorado
  • colors
  • comcast
  • Comey
  • comics
  • comixology
  • commerce
  • commerce department
  • common
  • commutes
  • company
  • competition
  • complaint
  • completely
  • complimentary
  • compound
  • Comprehensive
  • computational
  • computer
  • computer building
  • computers
  • concept art
  • concerning
  • confirmed
  • confirms
  • Connacht
  • connected home
  • connectedhome
  • consciousness
  • conservation
  • Conserve
  • conspiracies
  • conspirators
  • Constant
  • construct
  • Consume
  • consumer tech
  • contact tracing
  • contaminated
  • contamination
  • content moderation
  • continuous
  • contract
  • contractor
  • contractors
  • contracts
  • control
  • controller
  • convert
  • convertible
  • cooking
  • cops
  • cord cutters
  • cordless
  • coronavirus
  • corsair
  • cortisone
  • cosplay
  • costs
  • Could
  • countless
  • courts
  • covertly
  • covid 19
  • covid 19 reopening
  • COVID-
  • cpu
  • cpus
  • created
  • Creativity
  • Creed
  • creepypasta
  • crime
  • criteria
  • critical race theory
  • Croatia
  • cross-site tracking
  • crossover
  • crowdfunding
  • crunchyroll
  • crusher evo
  • Crysis
  • crystal dynamics
  • current
  • cx 400bt
  • CyberGhost
  • Cyberpunk
  • cybersecurity
  • cytokine
  • dangerous
  • daniel prude
  • dark shadows
  • dark web
  • darling
  • darpa
  • das
  • data
  • data portability
  • data privacy
  • data security
  • data transfer project
  • dating
  • david benioff
  • david polfeldt
  • davidbenioff
  • Daylight
  • daylight saving time
  • db weiss
  • dbweiss
  • dc
  • dc comics
  • dc fandome
  • ddos
  • ddos attacks
  • deadly
  • deals
  • dean parisot
  • death
  • debunks
  • debuts
  • Decades-old
  • Deciphering
  • decisions
  • declares
  • deep learning
  • deepfake
  • deepfakes
  • deepmind
  • DeepMind's
  • defending democracy program
  • deficiency
  • deforestation
  • del rey
  • delay
  • delays
  • deletes
  • deliveries
  • delivery
  • dell
  • dell deals
  • demanding
  • democratic party
  • demonstrate
  • demonstrates
  • Demonstrating
  • denim
  • Department
  • department of commerce
  • department of defense
  • Dependence
  • Depot
  • Depression
  • deron j powell
  • Descent
  • describes
  • design
  • designation
  • designers
  • details
  • detecting
  • detection
  • determine
  • dev patel
  • develop
  • developers
  • development
  • developmental
  • device
  • devices
  • dexamethasone
  • diabetes
  • Diabetes-in-a-dish
  • didn't
  • diesel
  • diets
  • differing
  • digital
  • digital cameras
  • digital diversions
  • Digital's
  • Dimensity
  • dinosaur
  • dipayan ghosh
  • direct
  • disabilities
  • disasters
  • Discord
  • discount
  • discover
  • discovered
  • Discovering
  • discovers
  • discovery
  • disenchantment
  • disney
  • disney plus
  • disney plus hotstar
  • disneyplus
  • display
  • displayhdr 600
  • Disrespect
  • dissociation
  • distance learning
  • ditch
  • Division
  • diy
  • dji
  • Djokovic
  • dlc
  • dlss
  • dna
  • do all the letters of the alphabet next you cowards
  • docs
  • dod
  • Dodder
  • doesn't
  • dogs
  • doing
  • doj
  • Dollars
  • dolphins
  • don mancini
  • don't
  • donald trump
  • donation
  • donnie yen
  • doom
  • doom eternal
  • doom ii
  • doometernal
  • doorbell
  • doorbell cams
  • doorbells
  • dorm
  • download
  • dragoncon
  • dragster
  • dramatically
  • dream edition
  • Dreamcast
  • drivers
  • driving
  • drone
  • drone delivery
  • drones
  • dropbox
  • drug-resistant
  • drugs
  • dryer
  • dual-screen
  • dune
  • dungeons and dragons
  • duo evo plus
  • Dynabook
  • dynamics
  • Dyson
  • dystopia
  • e-commerce
  • e-ink
  • e-mail
  • ea
  • earbuds
  • earlier
  • Earliest
  • Early
  • earth league international
  • earth observation
  • Earth's
  • easter
  • easter eggs
  • ecg
  • echo auto
  • echo buds
  • echoauto
  • ecofascism
  • economy
  • ed solomon
  • edgar wright
  • edge
  • Edinburgh
  • Edison
  • edison software
  • Edition
  • education
  • edward snowden
  • Effective
  • Elderly
  • election
  • election 2020
  • elections
  • electric
  • electric car
  • electric scooters
  • electric truck
  • electric vehicle
  • electrical
  • electrolyte
  • electron
  • electronic
  • electronic arts
  • electronic skin
  • elephant
  • elephants
  • elon musk
  • emails
  • embedded
  • Emergency
  • emissions
  • enables
  • enc
  • ending
  • endurance peak 2
  • endurance peak ii
  • energy
  • engadget podcast
  • engadgetdeals
  • engadgetpodcast
  • engadgetupscaled
  • Engineers
  • England
  • enhance
  • Enjoy
  • entertainment
  • Entry-level
  • environment
  • environmental protection agency
  • eoin colfer
  • epa
  • epic
  • epic games
  • epic vs apple
  • Epic’s
  • epicgames
  • episode
  • equipped
  • Erangel
  • eshop
  • espionage
  • esports
  • esportssg
  • establish
  • Estrogen
  • eta
  • Europe's
  • European
  • eurorack
  • euthanasia
  • euv
  • ev
  • Every
  • evictions
  • evidence
  • evolution
  • examines
  • excellent
  • exclusive
  • exercise
  • exist
  • expanded universe
  • expands
  • expensive
  • experience accessibility team
  • Experimental
  • explains
  • explorer project
  • export
  • exposure
  • exposure notification
  • extension
  • extinction
  • extreme e
  • extreme ultraviolet
  • extremee
  • exxon
  • exxonmobil
  • faa
  • face masks
  • face shields
  • facebook
  • facebook live
  • facebook wrote a press release
  • Facebook's
  • facilities
  • factors
  • failure
  • Failures
  • fainting
  • fake
  • fake events
  • fake news
  • fakes
  • falcon 9
  • fall 2020
  • fall guys
  • families
  • fascism
  • fast
  • fastest
  • Fastly
  • FAU-G
  • fbi
  • fcc
  • fda
  • FDA's
  • feature
  • federal communications commission
  • federalcommunicationscommission
  • fediverse
  • fedot tumusov
  • Felix
  • Females
  • femtech
  • fertility tech
  • fibre
  • Fidelio
  • Fidelity
  • fields
  • Figuring
  • film
  • finally
  • finally multicolor hue lightstrips
  • Finding
  • finds
  • Finest
  • fingerprint reader
  • fire tv
  • first
  • first amendment
  • fisa
  • fitbit
  • fitbit charge 4
  • fitness
  • fitness bands
  • fitness gear
  • fitness trackers
  • Fitter
  • five eyes
  • flash
  • flaunts
  • flexible
  • flexible display
  • Flight
  • flight simulator 2020
  • flint
  • flood
  • Floppy'
  • florida
  • flowering
  • flying car
  • flying taxis
  • fold 2
  • foldable
  • foldable phone
  • foldables
  • folding
  • Following
  • food
  • food justice
  • food security
  • Food-web
  • football
  • footwear
  • forces
  • forcibly
  • ford
  • fordpass
  • forecast
  • foreign
  • forests
  • Forget
  • fortnite
  • Fortnite's
  • Forty-Year-Old
  • Forward-thinking
  • forwarding limit
  • Fossil
  • fossils
  • found
  • fountain pens
  • fox news
  • fox soccer plus
  • France
  • fraud
  • free
  • free comics
  • free speech
  • free-to-play
  • freshwater
  • Friday
  • frontier
  • fuck fossil fuels
  • Fujifilm
  • full frame cameras
  • full-frame
  • Functions
  • Fungi
  • future
  • g-sync
  • g-sync ultimate
  • g9
  • gadgetry
  • gadgets
  • Galaxy
  • galaxy a42 5g
  • galaxy book flex
  • galaxy book flex 5g
  • galaxy buds plus
  • galaxy fit
  • galaxy fit 2
  • galaxy fold
  • galaxy s20
  • galaxy s20 fan edition
  • galaxy s20 ultra
  • galaxy tab a7
  • galaxy watch 3
  • galaxy z fold 2
  • galaxy z fold 2 5g
  • galaxy z fold2
  • galaxybookflex
  • galaxybookflex5g
  • gallery
  • game & watch
  • game boy
  • game of thrones
  • game-breaking
  • gameboy
  • gameofthrones
  • Gamers
  • games
  • Gamifying
  • gaming
  • gaming desktops
  • gaming gear
  • gaming laptop
  • gaming laptops
  • gaming monitor
  • gaming shelf
  • gas pump
  • gas station
  • gaspump
  • gasstation
  • gear
  • geforce
  • geforce rtx
  • geforce rtx 2060
  • geforce rtx 3080
  • geforcertx3080
  • gene kozicki
  • generous
  • Genes
  • Genetic
  • genetics
  • Genome
  • Genomic
  • Germany
  • Germany's
  • getting
  • getting out
  • giancarlo esposito
  • Giant
  • gig economy
  • gig workers
  • gizmos
  • glaciers
  • glitch
  • global tel link
  • Globalization
  • Gmail
  • go vacation
  • godzilla vs kong
  • gofundme
  • goltv
  • gong li
  • google
  • google ad policy
  • google ads
  • google assistant
  • google assistant snapshot
  • google chrome
  • google docs
  • google drive
  • google images
  • google kids space
  • google magenta
  • google maps
  • google play
  • google podcasts
  • Google's
  • googlekidsspace
  • gopro
  • gorilla glass
  • gotten
  • gpu
  • gpus
  • Graduate
  • Grand
  • grand central publishing
  • graphic neural network
  • graphically-impressive
  • graphics
  • graphics card
  • graphics cards
  • gravitational wave
  • Gravity
  • gravity waves
  • green drone
  • grills
  • groceries
  • growth
  • guidance
  • guidelines
  • guides
  • Guilt
  • Gulls
  • gwichin
  • hackers
  • hacking
  • hairdye
  • halloween
  • Handgrip
  • handing
  • handle
  • happens
  • happier
  • haptics
  • hard truths
  • harder
  • hardware
  • harvard
  • harvard university
  • harvarduniversity
  • hashes
  • Hastings
  • have your cake and eat it too
  • hawc
  • hawk rev vampire slayers
  • hawkeye
  • hbo
  • hbo max
  • hdr10+
  • headache
  • headed
  • headphones
  • headpohones
  • headset
  • headsets
  • health
  • Hearing
  • heart
  • heat wave
  • heat-free
  • Heavy
  • Hedge
  • heliophysics
  • hell to the no
  • hellfeed
  • hello games
  • Helminth
  • Helping
  • henry zaga
  • hepa
  • Here's
  • herman cain
  • heroes
  • hey email app
  • higher
  • highfire
  • hillary clinton
  • hints
  • hisense
  • history
  • hitting the books
  • hittingthebooks
  • holiday
  • holidays
  • home
  • home fitness
  • home schooling
  • home security
  • home theater
  • homepage
  • homepod
  • homesecurity
  • homework gap
  • honeybees
  • honeysuckle
  • honor
  • Honor's
  • horror
  • horsepower
  • Hostgator
  • hosting
  • hosts
  • hot toys
  • Hotspots'
  • hotstar
  • House
  • households
  • hp
  • hp deals
  • htc
  • Huawei
  • Hubble
  • hue play gradient
  • hugo weaving
  • human
  • Hunter
  • hunters
  • hurricane katrina
  • hurricane laura
  • hurricane season
  • hybrid
  • hypersonic
  • hypersonic missiles
  • hypertension
  • hyperx
  • Hyrule
  • i miss midi music
  • ian alexander
  • iap
  • ice ice maybe
  • ice on thin ice
  • Iceland
  • icloud
  • id software
  • id.4
  • ideas
  • Identification
  • identified
  • identify
  • idw
  • ifa
  • ifa 2020
  • ifa2020
  • ihome
  • ihome deals
  • imac
  • images
  • imitate
  • immunity
  • immuno-acceptance
  • immunotherapy
  • impacts
  • important
  • improved
  • Improving
  • in-app purchases
  • includes
  • income
  • incorrect
  • increase
  • increased
  • India
  • Indian
  • indie
  • individuals
  • indoor
  • inexpensive
  • Infants
  • infection
  • infections
  • infinity ward
  • Inflammation
  • influencer
  • influencers
  • Informing
  • informs
  • infotainment
  • Ingenious
  • initiation
  • injunction
  • Inkjet
  • Insect
  • Insight
  • Insights
  • insta360
  • insta360 one r
  • Instagram
  • instagram reels
  • instagram stories
  • installation
  • Instant
  • instant pot
  • instant pot smart wifi
  • instruments
  • insulin
  • integrated graphics
  • intel
  • intel core i9
  • intel deals
  • intel evo
  • intel xe graphics
  • intelevo
  • interact
  • interior
  • intermediate-mass black hole
  • intermittent computing
  • international
  • internet
  • internet archive
  • internet balloons
  • internet culture
  • internet research agency
  • interventions
  • interview
  • introduce
  • introduces
  • introducing
  • intrusive
  • invest
  • Investigational
  • investment
  • invests
  • invoice
  • ios
  • ios 13
  • ios 13.7
  • ios 14
  • ios13
  • ios14
  • iot
  • ip54
  • ipad
  • ipad air
  • ipad os 14
  • ipados14
  • iPhone
  • ipod
  • Islanders
  • isotope
  • israel
  • Italian
  • italy
  • items
  • its business time
  • japan
  • jason scott lee
  • jaxjox
  • jbl
  • jbl clip 4
  • jbl go 3
  • jbl partybox 310
  • jbl partybox on-the-go
  • jbl xtreme 3
  • JBL's
  • jeans
  • jedi
  • jeff bezos
  • jeff bond
  • jennifer jason leigh
  • jenny slate
  • jet li
  • jetpacks
  • jim butcher
  • JioFiber
  • jj abrams
  • joe biden
  • johnson johnson
  • jon favreau
  • jonathan majors
  • jordan eldredge
  • jordan peele
  • josh boone
  • josh guillory
  • journalism
  • juicer
  • july 4th
  • Jumping'
  • jumpstarts
  • jurassic world dominion
  • jurnee smollett
  • just transition
  • Justice
  • juul
  • jw nijman
  • jw rinzler
  • kamala harris
  • Karaoke
  • karate kid
  • kate bishop
  • kate bush
  • keanu reeves
  • Keeping
  • kenosha
  • kevin conway
  • keyboards
  • keystep
  • keystep pro
  • kick stage
  • Kidneys
  • kids
  • killer
  • king of sweden
  • kinja deals
  • konami
  • koofr
  • kotaku core
  • kotakucore
  • lab-grown
  • Labor
  • lafayette police chief scott morgan
  • laika
  • Lakers
  • lana wachowski
  • landlords
  • laptop
  • laptops
  • large attachments
  • largest
  • laser
  • laser tv
  • latest
  • launch
  • launch complex 2
  • launched
  • launches
  • laura ingraham
  • laurencefishburne
  • lawsuit
  • lawsuits
  • layout
  • leader
  • leading
  • leading-edge
  • League
  • league of legends
  • league of legends championship series
  • leak
  • leakages
  • Leaked
  • leaks
  • leaky buckets
  • learn
  • Legends
  • legion
  • legion slim 7i
  • Leinster
  • Lemonade
  • lenovo
  • lenovo legion 7
  • lenovo legion slim 7i
  • lenovo smart clock
  • lenovo smart clock essential
  • lenovo tab m10 hd gen 2
  • lenovo tab p11 pro
  • lenovo yoga
  • lenovo yoga 9i
  • leopard
  • lessen
  • letting
  • lev grossman
  • level
  • lewis hamilton
  • lg
  • lg deals
  • lg wing
  • lgbtq
  • license
  • licensing
  • lidar
  • lifestyle
  • light
  • Lightning
  • lightsabers
  • lightstrips
  • lightweight
  • ligo
  • linked
  • Links
  • Linux
  • lite
  • lithography
  • Little
  • liu cixin
  • liu yifei
  • liucixin
  • live
  • live sports
  • livestream
  • livestreaming
  • lo-fi
  • lo-fi player
  • local news
  • Locating
  • location
  • lockhart
  • lockheed martin
  • Loggerhead
  • logitech
  • logo
  • longread
  • looks
  • loon
  • loses
  • louisiana
  • lovecraft country
  • lovecraft country recaps
  • low-cost
  • Lowe's
  • lower ninth ward
  • lpddr5
  • lsc
  • lucasfilm
  • Lucid
  • lucid air
  • lucid motors
  • LucidLink
  • lucifer
  • Lumix
  • lutron
  • m night shyamalan
  • macbook air
  • macbook pro
  • mach 5
  • mach-e
  • machine learning
  • magenta
  • Magenta's
  • magicbook pro 16
  • mail
  • mail in ballots
  • mail-in voting
  • Mail's
  • maintain
  • maisie williams
  • makes
  • Making
  • malaria
  • males
  • Managing
  • Mandalorian
  • Mandalorian's
  • mandy patinkin
  • manipulated media
  • map
  • mapping
  • marijuana
  • marine
  • Mario
  • mario kart
  • mario kart live
  • mario kart live home circuit
  • mark zuckerberg
  • market
  • Marketing
  • martial arts
  • marvel
  • marvel cinematic universe
  • marvel comics
  • marvel studios
  • Marvel's
  • marvelentertainment
  • marvels avengers
  • masks
  • massive entertainment
  • massiveentertainment
  • mastodon
  • mastodons
  • MatePad
  • material
  • mathematical
  • Matric
  • matt ruff
  • matter
  • matterport
  • mattress
  • mattresses
  • mauritius
  • max-q
  • meat
  • mechanical
  • media
  • MediaTek
  • mediatonic
  • medicine
  • mega city one
  • mega-shark
  • meghan markle
  • meghanmarkle
  • meh deals
  • members
  • memes
  • memory
  • mental health
  • mentality
  • mergers and acquistions
  • messages
  • messenger
  • metadata
  • metal gear solid
  • Meteorite
  • method
  • metroid
  • miami
  • michael k williams
  • Microbes
  • microfiber
  • Microgel
  • Microsoft
  • microsoft edge
  • Microsoft's
  • mid-range
  • Middle
  • midi
  • midi controller
  • migrations
  • miir deals
  • military technology
  • militias
  • Millions
  • Minecraft–
  • Miniature
  • minimize
  • mining
  • mirrorless
  • mirrorless cameras
  • misha green
  • misinformation
  • mistakes
  • mite-y
  • mixed reality
  • mixes
  • mobil
  • mobile
  • Mobile's
  • model
  • model 3
  • model s
  • model x
  • model y
  • moderna
  • modification
  • mods
  • modular synthesizer
  • mojang
  • molecular
  • Molecule
  • monique candelaria
  • monitor
  • Monitoring
  • Monsters
  • months
  • moon
  • morally bankrupt exploitative shitbags
  • more oled laptops please
  • mortality
  • motherandroid
  • Motorola
  • motorola one
  • motorola one 5g
  • Motorola's
  • Motors
  • mouse
  • moveaudio s200
  • movie
  • movie theaters
  • movies
  • movies anywhere
  • mozilla firefox
  • mq direct deals
  • mr carey
  • msi
  • msi summit
  • msi summit series
  • MSI's
  • mulan
  • multiverses
  • Munster
  • Murray
  • museum
  • museums
  • music
  • music making
  • music quiz
  • musical instruments
  • Musk's
  • mustang
  • mustang mach-e
  • mutations
  • myneato
  • mystery
  • mystery jetpack
  • myths
  • naked
  • naming
  • Nanoearthquakes
  • nanomachine
  • nasa
  • national security agency
  • Nations
  • Natural
  • Nature
  • naughty dog
  • Neanderthals
  • neato
  • neato d10
  • neato d8
  • neato d9
  • nebraska
  • needs
  • Neglected
  • nemesis
  • neon
  • nest
  • nest hello
  • netflix
  • networks
  • neuralink
  • neurons
  • new mutants
  • new orleans
  • new swift 5 and swift 3 from acer
  • new tab page
  • new years eve
  • newegg
  • newegg deals
  • newest
  • Newly
  • news
  • newsletter
  • newyork
  • next-gen
  • nfl
  • nfl network
  • nfl redzone
  • ngo
  • nhra nationals
  • nhtsa
  • nick antosca
  • nickelodeon
  • nicolas cage
  • nike
  • nike deals
  • niki caro
  • ninebot
  • ninja
  • nintendo
  • nintendo switch
  • nintendo switch deals
  • no man's sky
  • no time to die
  • noah ringer
  • noise
  • noise cancelling
  • noise-canceling
  • Nokia
  • nokia 3310
  • Nominet
  • north korea
  • north pole
  • northern
  • nos4a2
  • nostalgia
  • not the fun jedi saga
  • notebook
  • notice
  • Novak
  • Novel
  • novels
  • nsa
  • nsa scandal
  • nubia watch
  • nubia watch review
  • Nuclear
  • Nuggets
  • nuke
  • Nurses
  • nvidai
  • nvidia
  • nvidia geforce
  • nvidia rtx 3070
  • nvidia rtx 3080
  • nvidia rtx 3090
  • Nvidia’s
  • nvidiageforce
  • nxtpaper
  • nyc
  • nypd
  • Ocean
  • oceans
  • oculus quest
  • offer
  • offered
  • offering
  • offers
  • official
  • oil and gas
  • oil spill
  • older
  • Olufsen's
  • olympics
  • on demand
  • oneplus
  • oneplus 7t
  • oneplus watch
  • online
  • OnlyFans
  • onmail
  • open the flood gates
  • opens
  • operating
  • Operation
  • opioids
  • Oracle
  • orbit
  • oregon trail
  • origami
  • origin
  • Orion
  • orion pictures
  • our garbage president
  • outage
  • outages
  • Outbreak
  • Overcast's
  • overheating
  • OVHcloud
  • oxygen
  • P-Series
  • pacemakers
  • packages
  • packs
  • paleontology
  • panasonic
  • panasonic lumix s5
  • Panasonic's
  • Pandemic
  • Panther
  • paper
  • paper based electronics
  • paramount
  • participate
  • partybox
  • pascal
  • patch
  • patent
  • Pattinson
  • pavement
  • paying
  • payments
  • paypal
  • pbug
  • pc
  • pc gaming
  • pco
  • peacock
  • Peculiar
  • peddling to nowhere
  • pedro pascal
  • peloton
  • penguin random house
  • pens
  • Pentagon
  • People
  • permafrost
  • permanent
  • permanently
  • permuted press
  • Personal
  • personal computing
  • personal data
  • personalization
  • petrochemicals
  • pfizer
  • Philips
  • philips hue
  • phone
  • phone cases
  • phone trees
  • phones
  • Photography
  • photon
  • Photos
  • pictures
  • pilot
  • pins
  • Pinterest
  • pinterest today
  • pique your interest
  • Pixel
  • plague rallies
  • planetary
  • planetary science
  • plans
  • Plant
  • plants
  • Plasmin
  • plastic
  • plastic pollution
  • platforms
  • play store
  • playstation
  • playstation 4
  • playstation 5
  • playstation vr
  • playstation4
  • playstationvr
  • please help my brain its very sick
  • please no
  • pleasure
  • plugin
  • poaching
  • poco x3
  • pocox3
  • podcast
  • podcasts
  • point-of-care
  • pokemon go
  • polar orbit
  • Polestar
  • polestar 2
  • police
  • police shootings
  • policy
  • Political
  • political ads
  • politics
  • Pollination
  • populations
  • porsche
  • Portable
  • portable speaker
  • portable speakers
  • portfolios
  • Portugal
  • possessor
  • Possible
  • Post-COVID
  • postal apocalypse
  • postal service
  • potential
  • powerful
  • powertrain
  • practical magic
  • pre-order
  • Predator
  • predator x25
  • predict
  • predictions
  • pregnancy
  • pregnancy tests
  • prehistoric
  • premier access
  • Premiere
  • premium
  • preorder
  • preorders
  • prepared
  • presents
  • president
  • president trump
  • presige 14 evo
  • pressure cooker
  • pressure-lowering
  • presumably
  • Preventing
  • preview
  • price
  • price drop
  • prices
  • primal
  • Prime
  • prime air
  • prime deliveries
  • prime gaming
  • prime video
  • prince harry
  • princeharry
  • principles
  • print
  • printer
  • Prior
  • prison phone app
  • privacy
  • privacy and security
  • problems
  • processor
  • processors
  • product
  • Products
  • Program
  • programs
  • prohibited
  • project
  • project 10 million
  • project athena
  • projector
  • projectors
  • proof
  • Proposed
  • props
  • propulsion
  • prosthetics
  • protein
  • protests
  • prototype
  • provide
  • ps plus
  • ps vr
  • ps1
  • ps2
  • ps3
  • ps4
  • ps5
  • psvr
  • pubg
  • pubg corporation
  • pubg mobile
  • pubg mobile nordic map
  • pubgmsg
  • purchase
  • purchased
  • purdue university
  • putting
  • pxo
  • qanon
  • qopy notes
  • quadruple
  • Qualcomm
  • qualcomm snapdragon
  • qualcomm snapdragon 8cx gen 2
  • Qualcomm's
  • quantum
  • quarter mile
  • quicker
  • quickly
  • quoll
  • quote
  • quote tweet
  • race
  • race car
  • racing
  • racism
  • Radiocarbon
  • Radiologists
  • Raised
  • ralph macchio
  • ram
  • rami ismail
  • RAMPOW
  • randomised
  • Raptors
  • rare earth metals
  • ray-tracing
  • raytheon
  • raytracing
  • razer
  • razer blade 15
  • razer deals
  • Razer's
  • razr
  • razr 2
  • reaches
  • readily
  • real estate
  • reality
  • Realme
  • realtor
  • recent
  • recipe
  • recommended reading
  • record
  • recreading
  • redesign
  • Redmi
  • reels
  • reface
  • reflex
  • reflex latency analyzer
  • refresh rate
  • Regional
  • regulates
  • regulating
  • regulation
  • reinfection
  • release
  • release date
  • released
  • releasedate
  • releases
  • releasing
  • relic
  • reliever
  • relocation
  • remain
  • remote
  • remote learning
  • remote vehicle setup
  • remove
  • removed
  • renewable energy
  • rental
  • repair
  • Report
  • reportedly
  • reporting
  • representation
  • reproductive health
  • reproductive justice
  • Republican
  • republicans
  • Research
  • Researchers
  • resembles
  • reset
  • resignation
  • resolution
  • Resource
  • respiratory
  • response
  • restriction
  • retail
  • Retest
  • retro
  • retro gaming
  • return
  • return of the jedi
  • retweet
  • retweet with comment
  • reunite
  • reusable
  • reusable spacecraft
  • revealed
  • reveals
  • Revel
  • reverse engineering
  • review
  • reviews
  • Revolt
  • reweaving
  • rexlex
  • rhythm
  • rian johnson
  • rianjohnson
  • richard branson
  • richard donner
  • rick snyder
  • right
  • right wing extremism
  • ring
  • riot games
  • rip
  • risks
  • rival
  • riverdale
  • rmit university
  • roadmap
  • roads
  • roav
  • roav deals
  • Robert
  • robert pattinson
  • robert reiner
  • robin wright
  • robot
  • robotic
  • robotic vacuum
  • robots
  • rocket
  • rocket lab
  • rocket league
  • rockets
  • room
  • room 104
  • rosamund pike
  • rosamundpike
  • rough
  • routes
  • royal family
  • royalfamily
  • rtx
  • rtx 30 series
  • rtx 3000
  • rtx 3070
  • rtx 3080
  • rtx 3090
  • rumor
  • rumors
  • running
  • rupert murdoch
  • rural
  • russia
  • s1
  • safety
  • sales
  • samara weaving
  • samsung
  • samsung deals
  • samsung galaxy fit2
  • samsung unpacked
  • Samsung's
  • san francisco
  • sandragon 8cx
  • Santana
  • sars cov 2
  • satechi
  • satellite
  • satellites
  • saucy nugs
  • savings
  • scam
  • scams
  • scandals
  • scanwatch
  • school
  • schools
  • sci fi
  • science
  • Scientist
  • scientists
  • scorched
  • score
  • scott pruitt
  • scream 5
  • screen
  • screen pass
  • sd-03
  • Seagate
  • sean bean
  • sean murray
  • seanan mcguire
  • season
  • section 702
  • security
  • sedan
  • seeds
  • sega
  • segway
  • segway es2
  • select
  • self-centered
  • self-driving
  • self-organizing
  • sells
  • semi-autonomous
  • Sennheiser
  • sensing
  • sensor
  • September
  • sequencer
  • sequencing
  • Serena
  • Serengeti
  • Series
  • series 3
  • services
  • Severe
  • Shade
  • Shadowlands
  • shares
  • sharing
  • shenmue
  • shenmue 3
  • shield
  • shopping
  • short-throw projector
  • shortcut
  • shortcuts
  • shows
  • shudder
  • shut up and take my money
  • siberia
  • sick days
  • side deal deals
  • sidedeals
  • sights
  • signs
  • Silicon
  • Silver
  • simply
  • simulating
  • simulation
  • singapore
  • singing
  • sinkholes
  • skin
  • skullcandy
  • skydrive
  • skyscraper
  • slack
  • sleep
  • small
  • smart
  • smart clock
  • smart glasses
  • smart home
  • smart homes
  • smart lighting
  • smart lights
  • smart lock
  • smart speakers
  • smarthome
  • smartlighting
  • smartlock
  • smartphone
  • smartphones
  • smartwatch
  • smartwatches
  • smic
  • smoker
  • smoking
  • snapdragon
  • snapdragon 732g
  • snapdragon 765
  • snapdragon 8cx
  • snapdragon 8cx gen 2
  • social distancing
  • social life
  • social media
  • social media mistakes
  • social network
  • social networking
  • sociology
  • software
  • solar
  • solo pro
  • solve
  • Songbirds
  • Sonos
  • sony
  • Sony's
  • soundbar
  • south korea
  • southern route
  • space
  • space race
  • spacecraft
  • spaceflight
  • spacelopnik
  • spaceshiptwo
  • SpaceX
  • Spain
  • sparks
  • speaker
  • speakers
  • Special
  • species
  • specifications
  • spectre x360 13
  • speed
  • spent
  • spike
  • split inbox
  • split-second
  • Splitting
  • sports
  • sports plus
  • Spotify-owned
  • spread
  • sputnik v
  • square enix
  • st patricks day
  • stadia
  • Stage
  • stanford university
  • star trek
  • star trek 4
  • star trek discovery
  • star trek the motion picture
  • star trek the motion pictureinside the art and visual effects
  • star wars
  • star wars galaxys edge
  • star wars rebels
  • star wars the high republic
  • star wars the last jedi
  • star wars the rise of skywalker
  • Starlink
  • starlink hits streaming milestone
  • starship
  • start
  • starts
  • starwars
  • state
  • states
  • stationary
  • stationary bike
  • statistics
  • steady
  • stealth 15m
  • Steam
  • steelseries
  • stephen hawking
  • steroids
  • steven spielberg
  • stick
  • stop-motion animation
  • store
  • stories
  • story
  • stranger things
  • stream
  • streaming
  • streaming video
  • streaming wars
  • strength
  • Stress
  • Strix
  • Strokes
  • Strong
  • Structural
  • Structure
  • student
  • Study
  • sturgis
  • sub-6
  • subscription codes
  • subsurface oceans
  • subterranean oceans
  • Subtypes
  • success
  • suffering
  • suicide
  • suicide prevention
  • suited
  • summit b
  • summit e
  • summit series
  • sunglasses
  • sunlight
  • sunrise movement
  • sunscreen
  • Super
  • super bomberman r
  • super bomberman r online
  • super mario
  • super mario 3d all-stars
  • super mario 3d world
  • super mario 64
  • super mario all-stars
  • super mario bros.
  • super mario bros. 35
  • super mario galaxy
  • super mario sunshine
  • super typhoons
  • superlist
  • superman and lois
  • superpowers
  • SuperTank
  • supplier
  • support
  • supposedly
  • Supra
  • Surface
  • surface duo
  • surprise
  • surprising
  • surveillance
  • susanna clarke
  • suv
  • swamp thing
  • sweden
  • Swift
  • swift 3
  • swift 5
  • swift3
  • switch
  • switch online
  • syfy
  • syndrome
  • synth
  • synthesizer
  • Synthetic
  • T-Mobile
  • T-Mobile's
  • tablet
  • tabletop games
  • tablets
  • take-two interactive
  • takes
  • taobao
  • tar
  • taser
  • tattoo
  • taxes
  • taycan
  • taycan cross turismo
  • tcl
  • tcl nxtpaper
  • TCL's
  • team joe
  • Team's
  • TeamGroup
  • tease
  • tech policy
  • technique
  • technology
  • TechRadar's
  • teenage engineering
  • Teenagers
  • telecoms
  • telemate
  • TELEVISION
  • telmate
  • Tencent
  • tencent games
  • Tenet
  • terms
  • terms of disservice
  • tesla
  • test flight
  • testbed
  • testing
  • tetris
  • texas
  • text-to-speech
  • textlies
  • thanks
  • that's
  • the 100
  • the amazon is burning at an alarming rate
  • the avengers
  • the batman
  • the best keyboards
  • the best of gizmodo
  • the best stories of the week
  • the best tech for remote learning
  • the boys
  • the descent
  • the division 2
  • the dream architects
  • the engadget podcast
  • the goonies
  • the host
  • the last campfire
  • the last of us
  • the last of us part ii
  • the magicians
  • the mandalorian
  • the matrix
  • the matrix 4
  • the multivorce
  • the new mutants
  • the premiere
  • the princess bride
  • the riddler
  • the silver arrow
  • the sims
  • the three-body problem
  • the walking dead
  • the witcher 3
  • thebuyersguide
  • thedivision2
  • theengadgetpodcast
  • themandalorian
  • theme partks
  • themorningafter
  • theory
  • Therapeutic
  • therapy
  • There
  • There's
  • These
  • thethreebodyproblem
  • they call it global warming for a reason
  • they cloned tyrone
  • things
  • think
  • third
  • this is not the future
  • thom browne
  • Thousands
  • thps
  • thq
  • thrawn
  • thrawn ascendancy chaos rising
  • threatening
  • Three
  • Throne
  • throwing
  • TicWatch
  • Tiger
  • tiger lake
  • tiktok
  • tim sweeney
  • Time's
  • timothy olyphant
  • timothy zahn
  • titan books
  • Today
  • Today's
  • toilets
  • tokyo olympics
  • tomorrow
  • tony hawk
  • tony hawk's pro skater
  • tools
  • totally
  • toyota
  • track
  • tracy deonn
  • trade
  • trade war
  • traffic
  • trailers
  • trainees
  • transfer
  • transit
  • transmission
  • transportation
  • trayford pellerin
  • tread
  • treadmill
  • treat
  • treatment
  • trees
  • trending topic
  • treyarch
  • trials
  • tricks
  • tripled
  • trivia
  • true wireless
  • true wireless earbuds
  • truestrike
  • trump
  • trump administration
  • trump rallies
  • Trump's
  • trumps america
  • tucker carlson
  • tumors
  • Tungsten
  • turing
  • turned
  • turntables
  • turtles
  • tv
  • tvs
  • tweets
  • twist
  • twitch
  • twitch sings
  • twitter
  • typhoons
  • typical
  • uber
  • Ubisoft
  • Ubisoft's
  • ufc
  • ufc 4
  • ula
  • Ulster
  • Ultra
  • ultra short throw projector
  • Ultrabooks
  • ultraportables
  • unboxing
  • Uncategorized @hi
  • Unconventional
  • uncover
  • Uncovering
  • under-display
  • understanding
  • unexpected
  • unfair
  • unfiltered
  • unintentionally
  • Unique
  • United
  • united launch alliance
  • united nations
  • unlock
  • unprecedented
  • unreal engine
  • unveils
  • upcoming
  • Update
  • upgrade
  • upper
  • us air force
  • us military
  • usda
  • user data
  • user review
  • user review roundup
  • user reviews
  • userreview
  • userreviewroundup
  • userreviews
  • users
  • Using
  • usps
  • ust
  • vacation
  • vaccine
  • Vaccines
  • vacuum
  • valentines day
  • validates
  • valve
  • vanderbilt university
  • vantrue
  • vaping
  • variations
  • vava
  • vava deals
  • vehicle
  • vehicles
  • Velour
  • Venom
  • verizon
  • version 1.7.14.0
  • vertical
  • vesa
  • vfx
  • vibert thio
  • vicarious visions
  • victoria
  • victorian police
  • videgames
  • video
  • video authenticator
  • video cards
  • video games
  • video streaming
  • videocards
  • videos
  • vinyl
  • viral videos
  • virgin galactic
  • virginia
  • Virgo
  • virtual
  • virtual reality
  • virtual showroom
  • virtual tour
  • Viruses
  • visually impaired
  • Vitamin
  • Vizio
  • vlambeer
  • vlogging
  • vod
  • voice acting
  • voice assistant
  • Volkswagen
  • volta zero
  • voting
  • voting information center
  • vr
  • vr gaming
  • vrgaming
  • vss unity
  • vulnerable
  • wakanda
  • wallops island
  • wally wingert
  • Walmart
  • walmart is coming
  • wanted pinkertons
  • wants
  • Warcraft
  • warner bros
  • Warriors
  • Wasps
  • watch
  • watch es
  • watch gs pro
  • watch it nerds
  • watch parties
  • watches
  • water
  • water resistant
  • waze
  • wearable
  • wearables
  • weather
  • weather is happening
  • web
  • web browsers
  • web tracking
  • webcams
  • weber
  • weber smokefire ex4
  • weber smokefire ex4 review
  • website
  • weed
  • weeklydeals
  • weigh
  • Weight
  • Welcome
  • wernher von braun
  • West'
  • western
  • western digital
  • western digital deals
  • whales
  • What's
  • whatever
  • WhatsApp
  • Where
  • Which
  • white house
  • white privilege
  • whole foods market
  • why is it always florida
  • widescreen
  • wifi
  • wifi 6
  • wifi smart lock
  • wifi6
  • wikipedia
  • wildfire season is year round now
  • wildfires
  • wildleaks
  • wildlife
  • william zabka
  • Williams
  • winamp skin museum
  • windows
  • windows 10
  • windows 95
  • windows on arm
  • wing
  • winner
  • winning
  • wireless
  • wireless headphones
  • wisconsin
  • wishes
  • Witcher
  • withdraws
  • withings
  • withings scanwatch
  • Wolves
  • Women
  • won't
  • wonder woman 1984
  • woodpeckers
  • Wool-like
  • WordPress
  • working
  • workout
  • workplace
  • workstation
  • World
  • world health organization
  • world's
  • worsens
  • worst
  • worth
  • writing
  • Wrong-way'
  • wynonna earp
  • x men
  • X-ray
  • x3
  • x44
  • xbox
  • xbox deals
  • xbox live gold
  • xbox series s
  • xbox series x
  • Xiaomi
  • Xiaomi's
  • Xperia
  • xperia 5 ii
  • xps 13
  • Yahoo
  • years
  • Yellowstone
  • yoda
  • yoga
  • yoson an
  • you get a laptop and you get a laptop
  • you're
  • youku
  • Young
  • your news update
  • youtube
  • youtube tv
  • yu suzuki
  • yummy
  • yves maitre
  • z
  • zack snyder
  • zenbook 13
  • zenbook flip 13
  • zenbook flip s
  • zenbook s
  • Zendure
  • Zenfone
  • zimbabwe
  • zombies
  • Zooming
  • zte
  • zuko

Advertise

Contact us

Follow Us

Recent News

Poco C3 to Feature 13-Megapixel Triple Rear Camera Setup, Up to 4GB RAM

Poco C3 to Feature 13-Megapixel Triple Rear Camera Setup, Up to 4GB RAM

October 3, 2020
Know About Gandhi jayanti 2020: etihaas, mahatv

Know About Gandhi jayanti 2020: etihaas, mahatv

October 1, 2020

जिज्ञासा ज़रूरी है इसीलिए हम आपको देंगे जानकारी जो आपकी जिज्ञासा की प्यास को बुझा देगी
© JIGYAASA.IN

No Result
View All Result
  • Home

© 2020 JIGYAASA.IN