Jigyaasa
  • Home
No Result
View All Result
Jigyaasa
  • Home
No Result
View All Result
Jigyaasa
No Result
View All Result

Time Series Forecasting With Prophet in Python

Subhanshu Singh by Subhanshu Singh
अगस्त 30, 2020
in Artificial Intelligence
0
time-series-forecasting-with-prophet-in-python
1
VIEWS
Share on FacebookShare on Twitter

Time series forecasting can be challenging as there are many different methods you could use and many different hyperparameters for each method.

The Prophet library is an open-source library designed for making forecasts for univariate time series datasets. It is easy to use and designed to automatically find a good set of hyperparameters for the model in an effort to make skillful forecasts for data with trends and seasonal structure by default.

In this tutorial, you will discover how to use the Facebook Prophet library for time series forecasting.

After completing this tutorial, you will know:

  • Prophet is an open-source library developed by Facebook and designed for automatic forecasting of univariate time series data.
  • How to fit Prophet models and use them to make in-sample and out-of-sample forecasts.
  • How to evaluate a Prophet model on a hold-out dataset.

Let’s get started.

Time Series Forecasting With Prophet in Python

Time Series Forecasting With Prophet in Python

Photo by Rinaldo Wurglitsch, some rights reserved.

Tutorial Overview

This tutorial is divided into three parts; they are:

  1. Prophet Forecasting Library
  2. Car Sales Dataset
    1. Load and Summarize Dataset
    2. Load and Plot Dataset
  3. Forecast Car Sales With Prophet
    1. Fit Prophet Model
    2. Make an In-Sample Forecast
    3. Make an Out-of-Sample Forecast
    4. Manually Evaluate Forecast Model

Prophet Forecasting Library

Prophet, or “Facebook Prophet,” is an open-source library for univariate (one variable) time series forecasting developed by Facebook.

Prophet implements what they refer to as an additive time series forecasting model, and the implementation supports trends, seasonality, and holidays.

Implements a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects

— Package ‘prophet’, 2019.

It is designed to be easy and completely automatic, e.g. point it at a time series and get a forecast. As such, it is intended for internal company use, such as forecasting sales, capacity, etc.

For a great overview of Prophet and its capabilities, see the post:

  • Prophet: forecasting at scale, 2017.

The library provides two interfaces, including R and Python. We will focus on the Python interface in this tutorial.

The first step is to install the Prophet library using Pip, as follows:

sudo pip install fbprophet

Next, we can confirm that the library was installed correctly.

To do this, we can import the library and print the version number in Python. The complete example is listed below.

# check prophet version

import fbprophet

# print version number

print(‘Prophet %s’ % fbprophet.__version__)

Running the example prints the installed version of Prophet.

You should have the same version or higher.

Now that we have Prophet installed, let’s select a dataset we can use to explore using the library.

Car Sales Dataset

We will use the monthly car sales dataset.

It is a standard univariate time series dataset that contains both a trend and seasonality. The dataset has 108 months of data and a naive persistence forecast can achieve a mean absolute error of about 3,235 sales, providing a lower error limit.

No need to download the dataset as we will download it automatically as part of each example.

  • Monthly Car Sales Dataset (csv)
  • Monthly Car Sales Dataset Description

Load and Summarize Dataset

First, let’s load and summarize the dataset.

Prophet requires data to be in Pandas DataFrames. Therefore, we will load and summarize the data using Pandas.

We can load the data directly from the URL by calling the read_csv() Pandas function, then summarize the shape (number of rows and columns) of the data and view the first few rows of data.

The complete example is listed below.

# load the car sales dataset

from pandas import read_csv

# load data

path = ‘https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv’

df = read_csv(path, header=0)

# summarize shape

print(df.shape)

# show first few rows

print(df.head())

Running the example first reports the number of rows and columns, then lists the first five rows of data.

We can see that as we expected, there are 108 months worth of data and two columns. The first column is the date and the second is the number of sales.

Note that the first column in the output is a row index and is not a part of the dataset, just a helpful tool that Pandas uses to order rows.

(108, 2)

     Month  Sales

0  1960-01   6550

1  1960-02   8728

2  1960-03  12026

3  1960-04  14395

4  1960-05  14587

Load and Plot Dataset

A time-series dataset does not make sense to us until we plot it.

Plotting a time series helps us actually see if there is a trend, a seasonal cycle, outliers, and more. It gives us a feel for the data.

We can plot the data easily in Pandas by calling the plot() function on the DataFrame.

The complete example is listed below.

# load and plot the car sales dataset

from pandas import read_csv

from matplotlib import pyplot

# load data

path = ‘https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv’

df = read_csv(path, header=0)

# plot the time series

df.plot()

pyplot.show()

Running the example creates a plot of the time series.

We can clearly see the trend in sales over time and a monthly seasonal pattern to the sales. These are patterns we expect the forecast model to take into account.

Line Plot of Car Sales Dataset

Line Plot of Car Sales Dataset

Now that we are familiar with the dataset, let’s explore how we can use the Prophet library to make forecasts.

Forecast Car Sales With Prophet

In this section, we will explore using the Prophet to forecast the car sales dataset.

Let’s start by fitting a model on the dataset

Fit Prophet Model

To use Prophet for forecasting, first, a Prophet() object is defined and configured, then it is fit on the dataset by calling the fit() function and passing the data.

The Prophet() object takes arguments to configure the type of model you want, such as the type of growth, the type of seasonality, and more. By default, the model will work hard to figure out almost everything automatically.

The fit() function takes a DataFrame of time series data. The DataFrame must have a specific format. The first column must have the name ‘ds‘ and contain the date-times. The second column must have the name ‘y‘ and contain the observations.

This means we change the column names in the dataset. It also requires that the first column be converted to date-time objects, if they are not already (e.g. this can be down as part of loading the dataset with the right arguments to read_csv).

For example, we can modify our loaded car sales dataset to have this expected structure, as follows:

...

# prepare expected column names

df.columns = [‘ds’, ‘y’]

df[‘ds’]= to_datetime(df[‘ds’])

The complete example of fitting a Prophet model on the car sales dataset is listed below.

# fit prophet model on the car sales dataset

from pandas import read_csv

from pandas import to_datetime

from fbprophet import Prophet

# load data

path = ‘https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv’

df = read_csv(path, header=0)

# prepare expected column names

df.columns = [‘ds’, ‘y’]

df[‘ds’]= to_datetime(df[‘ds’])

# define the model

model = Prophet()

# fit the model

model.fit(df)

Running the example loads the dataset, prepares the DataFrame in the expected format, and fits a Prophet model.

By default, the library provides a lot of verbose output during the fit process. I think it’s a bad idea in general as it trains developers to ignore output.

Nevertheless, the output summarizes what happened during the model fitting process, specifically the optimization processes that ran.

INFO:fbprophet:Disabling weekly seasonality. Run prophet with weekly_seasonality=True to override this.

INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.

Initial log joint probability = -4.39613

    Iter      log prob        ||dx||      ||grad||       alpha      alpha0  # evals  Notes

      99       270.121    0.00413718       75.7289           1           1      120

    Iter      log prob        ||dx||      ||grad||       alpha      alpha0  # evals  Notes

     179       270.265    0.00019681       84.1622   2.169e-06       0.001      273  LS failed, Hessian reset

     199       270.283   1.38947e-05       87.8642      0.3402           1      299

    Iter      log prob        ||dx||      ||grad||       alpha      alpha0  # evals  Notes

     240       270.296    1.6343e-05       89.9117   1.953e-07       0.001      381  LS failed, Hessian reset

     299         270.3   4.73573e-08       74.9719      0.3914           1      455

    Iter      log prob        ||dx||      ||grad||       alpha      alpha0  # evals  Notes

     300         270.3   8.25604e-09       74.4478      0.3522      0.3522      456

Optimization terminated normally:

  Convergence detected: absolute parameter change was below tolerance

I will not reproduce this output in subsequent sections when we fit the model.

Next, let’s make a forecast.

Make an In-Sample Forecast

It can be useful to make a forecast on historical data.

That is, we can make a forecast on data used as input to train the model. Ideally, the model has seen the data before and would make a perfect prediction.

Nevertheless, this is not the case as the model tries to generalize across all cases in the data.

This is called making an in-sample (in training set sample) forecast and reviewing the results can give insight into how good the model is. That is, how well it learned the training data.

A forecast is made by calling the predict() function and passing a DataFrame that contains one column named ‘ds‘ and rows with date-times for all the intervals to be predicted.

There are many ways to create this “forecast” DataFrame. In this case, we will loop over one year of dates, e.g. the last 12 months in the dataset, and create a string for each month. We will then convert the list of dates into a DataFrame and convert the string values into date-time objects.

...

# define the period for which we want a prediction

future = list()

for i in range(1, 13):

date = ‘1968-%02d’ % i

future.append([date])

future = DataFrame(future)

future.columns = [‘ds’]

future[‘ds’]= to_datetime(future[‘ds’])

This DataFrame can then be provided to the predict() function to calculate a forecast.

The result of the predict() function is a DataFrame that contains many columns. Perhaps the most important columns are the forecast date time (‘ds‘), the forecasted value (‘yhat‘), and the lower and upper bounds on the predicted value (‘yhat_lower‘ and ‘yhat_upper‘) that provide uncertainty of the forecast.

For example, we can print the first few predictions as follows:

...

# summarize the forecast

print(forecast[[‘ds’, ‘yhat’, ‘yhat_lower’, ‘yhat_upper’]].head())

Prophet also provides a built-in tool for visualizing the prediction in the context of the training dataset.

This can be achieved by calling the plot() function on the model and passing it a result DataFrame. It will create a plot of the training dataset and overlay the prediction with the upper and lower bounds for the forecast dates.

...

print(forecast[[‘ds’, ‘yhat’, ‘yhat_lower’, ‘yhat_upper’]].head())

# plot forecast

model.plot(forecast)

pyplot.show()

Tying this all together, a complete example of making an in-sample forecast is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

# make an in-sample forecast

from pandas import read_csv

from pandas import to_datetime

from pandas import DataFrame

from fbprophet import Prophet

from matplotlib import pyplot

# load data

path = ‘https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv’

df = read_csv(path, header=0)

# prepare expected column names

df.columns = [‘ds’, ‘y’]

df[‘ds’]= to_datetime(df[‘ds’])

# define the model

model = Prophet()

# fit the model

model.fit(df)

# define the period for which we want a prediction

future = list()

for i in range(1, 13):

date = ‘1968-%02d’ % i

future.append([date])

future = DataFrame(future)

future.columns = [‘ds’]

future[‘ds’]= to_datetime(future[‘ds’])

# use the model to make a forecast

forecast = model.predict(future)

# summarize the forecast

print(forecast[[‘ds’, ‘yhat’, ‘yhat_lower’, ‘yhat_upper’]].head())

# plot forecast

model.plot(forecast)

pyplot.show()

Running the example forecasts the last 12 months of the dataset.

The first five months of the prediction are reported and we can see that values are not too different from the actual sales values in the dataset.

          ds          yhat    yhat_lower    yhat_upper

0 1968-01-01  14364.866157  12816.266184  15956.555409

1 1968-02-01  14940.687225  13299.473640  16463.811658

2 1968-03-01  20858.282598  19439.403787  22345.747821

3 1968-04-01  22893.610396  21417.399440  24454.642588

4 1968-05-01  24212.079727  22667.146433  25816.191457

Next, a plot is created. We can see the training data are represented as black dots and the forecast is a blue line with upper and lower bounds in a blue shaded area.

We can see that the forecasted 12 months is a good match for the real observations, especially when the bounds are taken into account.

Plot of Time Series and In-Sample Forecast With Prophet

Plot of Time Series and In-Sample Forecast With Prophet

Make an Out-of-Sample Forecast

In practice, we really want a forecast model to make a prediction beyond the training data.

This is called an out-of-sample forecast.

We can achieve this in the same way as an in-sample forecast and simply specify a different forecast period.

In this case, a period beyond the end of the training dataset, starting 1969-01.

...

# define the period for which we want a prediction

future = list()

for i in range(1, 13):

date = ‘1969-%02d’ % i

future.append([date])

future = DataFrame(future)

future.columns = [‘ds’]

future[‘ds’]= to_datetime(future[‘ds’])

Tying this together, the complete example is listed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

# make an out-of-sample forecast

from pandas import read_csv

from pandas import to_datetime

from pandas import DataFrame

from fbprophet import Prophet

from matplotlib import pyplot

# load data

path = ‘https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv’

df = read_csv(path, header=0)

# prepare expected column names

df.columns = [‘ds’, ‘y’]

df[‘ds’]= to_datetime(df[‘ds’])

# define the model

model = Prophet()

# fit the model

model.fit(df)

# define the period for which we want a prediction

future = list()

for i in range(1, 13):

date = ‘1969-%02d’ % i

future.append([date])

future = DataFrame(future)

future.columns = [‘ds’]

future[‘ds’]= to_datetime(future[‘ds’])

# use the model to make a forecast

forecast = model.predict(future)

# summarize the forecast

print(forecast[[‘ds’, ‘yhat’, ‘yhat_lower’, ‘yhat_upper’]].head())

# plot forecast

model.plot(forecast)

pyplot.show()

Running the example makes an out-of-sample forecast for the car sales data.

The first five rows of the forecast are printed, although it is hard to get an idea of whether they are sensible or not.

          ds          yhat    yhat_lower    yhat_upper

0 1969-01-01  15406.401318  13751.534121  16789.969780

1 1969-02-01  16165.737458  14486.887740  17634.953132

2 1969-03-01  21384.120631  19738.950363  22926.857539

3 1969-04-01  23512.464086  21939.204670  25105.341478

4 1969-05-01  25026.039276  23544.081762  26718.820580

A plot is created to help us evaluate the prediction in the context of the training data.

The new one-year forecast does look sensible, at least by eye.

Plot of Time Series and Out-of-Sample Forecast With Prophet

Plot of Time Series and Out-of-Sample Forecast With Prophet

Manually Evaluate Forecast Model

It is critical to develop an objective estimate of a forecast model’s performance.

This can be achieved by holding some data back from the model, such as the last 12 months. Then, fitting the model on the first portion of the data, using it to make predictions on the held-pack portion, and calculating an error measure, such as the mean absolute error across the forecasts. E.g. a simulated out-of-sample forecast.

The score gives an estimate of how well we might expect the model to perform on average when making an out-of-sample forecast.

We can do this with the samples data by creating a new DataFrame for training with the last 12 months removed.

...

# create test dataset, remove last 12 months

train = df.drop(df.index[–12:])

print(train.tail())

A forecast can then be made on the last 12 months of date-times.

We can then retrieve the forecast values and the expected values from the original dataset and calculate a mean absolute error metric using the scikit-learn library.

...

# calculate MAE between expected and predicted values for december

y_true = df[‘y’][–12:].values

y_pred = forecast[‘yhat’].values

mae = mean_absolute_error(y_true, y_pred)

print(‘MAE: %.3f’ % mae)

It can also be helpful to plot the expected vs. predicted values to see how well the out-of-sample prediction matches the known values.

...

# plot expected vs actual

pyplot.plot(y_true, label=‘Actual’)

pyplot.plot(y_pred, label=‘Predicted’)

pyplot.legend()

pyplot.show()

Tying this together, the example below demonstrates how to evaluate a Prophet model on a hold-out dataset.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

# evaluate prophet time series forecasting model on hold out dataset

from pandas import read_csv

from pandas import to_datetime

from pandas import DataFrame

from fbprophet import Prophet

from sklearn.metrics import mean_absolute_error

from matplotlib import pyplot

# load data

path = ‘https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv’

df = read_csv(path, header=0)

# prepare expected column names

df.columns = [‘ds’, ‘y’]

df[‘ds’]= to_datetime(df[‘ds’])

# create test dataset, remove last 12 months

train = df.drop(df.index[–12:])

print(train.tail())

# define the model

model = Prophet()

# fit the model

model.fit(train)

# define the period for which we want a prediction

future = list()

for i in range(1, 13):

date = ‘1968-%02d’ % i

future.append([date])

future = DataFrame(future)

future.columns = [‘ds’]

future[‘ds’] = to_datetime(future[‘ds’])

# use the model to make a forecast

forecast = model.predict(future)

# calculate MAE between expected and predicted values for december

y_true = df[‘y’][–12:].values

y_pred = forecast[‘yhat’].values

mae = mean_absolute_error(y_true, y_pred)

print(‘MAE: %.3f’ % mae)

# plot expected vs actual

pyplot.plot(y_true, label=‘Actual’)

pyplot.plot(y_pred, label=‘Predicted’)

pyplot.legend()

pyplot.show()

Running the example first reports the last few rows of the training dataset.

It confirms the training ends in the last month of 1967 and 1968 will be used as the hold-out dataset.

           ds      y

91 1967-08-01  13434

92 1967-09-01  13598

93 1967-10-01  17187

94 1967-11-01  16119

95 1967-12-01  13713

Next, a mean absolute error is calculated for the forecast period.

In this case we can see that the error is approximately 1,336 sales, which is much lower (better) than a naive persistence model that achieves an error of 3,235 sales over the same period.

Finally, a plot is created comparing the actual vs. predicted values. In this case, we can see that the forecast is a good fit. The model has skill and forecast that looks sensible.

Plot of Actual vs. Predicted Values for Last 12 Months of Car Sales

Plot of Actual vs. Predicted Values for Last 12 Months of Car Sales

The Prophet library also provides tools to automatically evaluate models and plot results, although those tools don’t appear to work well with data above one day in resolution.

Further Reading

This section provides more resources on the topic if you are looking to go deeper.

  • Prophet Homepage.
  • Prophet GitHub Project.
  • Prophet API Documentation.
  • Prophet: forecasting at scale, 2017.
  • Forecasting at scale, 2017.
  • Car Sales Dataset.
  • Package ‘prophet’, R Documentation.

Summary

In this tutorial, you discovered how to use the Facebook Prophet library for time series forecasting.

Specifically, you learned:

  • Prophet is an open-source library developed by Facebook and designed for automatic forecasting of univariate time series data.
  • How to fit Prophet models and use them to make in-sample and out-of-sample forecasts.
  • How to evaluate a Prophet model on a hold-out dataset.

Do you have any questions?


Ask your questions in the comments below and I will do my best to answer.

Want to Develop Time Series Forecasts with Python?

Introduction to Time Series Forecasting With Python

Develop Your Own Forecasts in Minutes

…with just a few lines of python code

Discover how in my new Ebook:


Introduction to Time Series Forecasting With Python

It covers self-study tutorials and end-to-end projects on topics like:
Loading data, visualization, modeling, algorithm tuning, and much more…

Finally Bring Time Series Forecasting to


Your Own Projects

Skip the Academics. Just Results.

See What’s Inside

Tags: aiartificial intelligencemachine learningTime Series
Previous Post

Pandemic Presents Opportunities for Robots; Teaching Them is a Challenge 

Next Post

Deep Learning Models for Multi-Output Regression

Next Post
deep-learning-models-for-multi-output-regression

Deep Learning Models for Multi-Output Regression

प्रातिक्रिया दे जवाब रद्द करें

आपका ईमेल पता प्रकाशित नहीं किया जाएगा. आवश्यक फ़ील्ड चिह्नित हैं *

Category

  • -core
  • -inch
  • -year-old
  • 'anti-procrastination'
  • 'bang'
  • 'gold'
  • 'plug
  • 'Trending'
  • 0
  • 000 mah battery
  • 1
  • 10 billion dollars
  • 100gb
  • 11th gen
  • 1mii
  • 1mii deals
  • 2
  • 2-in-1
  • 2020 election
  • 2020 elections
  • 2020 presidential election
  • 20th century fox
  • 20th century studios
  • 2d
  • 2in1
  • 3.5 ghz
  • 35th
  • 360hz
  • 3d printing
  • 3dprinting
  • 4-series
  • 4k
  • 50 states of fright
  • 5g
  • 64-megapixel camera
  • 65
  • 8bitdo
  • 8k
  • a dark path
  • a10
  • a20
  • a20 gen 2
  • a40
  • a40tr
  • a50 wireless
  • abide
  • abortion
  • absentee ballots
  • Academy
  • acadiana mall
  • accelerated
  • accept sender
  • accepting
  • accessibility
  • accessibility center of excellence
  • acer
  • acer deals
  • acer spin 7
  • acerspin7
  • Acorn
  • action camera
  • action figures
  • active noise cancellation
  • Activision
  • activision blizzard
  • Activists
  • actually
  • ada
  • adam savage
  • addicted
  • administration
  • adobe
  • adopt
  • adrian smith
  • ads
  • adult swim
  • advanced optimus
  • advertising
  • affect
  • affordable
  • African
  • After
  • after math
  • aftermath
  • agriculture
  • ai
  • air carrier
  • air pollution
  • air quality
  • air travel
  • aircraft
  • AirDrop
  • airline
  • airplanes
  • airpods pro
  • airports
  • Airtel
  • ajit pai
  • alex winter
  • alexa
  • alexa for residential
  • alibaba
  • alice braga
  • alien addiction
  • aliens
  • Alienware
  • alienware 25
  • alienware 27
  • alienware 38
  • alienware deals
  • alipay
  • all up
  • all-electric
  • alpha global
  • alphabay
  • alphabet
  • alphabet workers union
  • alter
  • Amateur
  • amazfit
  • amazing
  • amazon
  • amazon alexa
  • amazon deals
  • amazon echo
  • amazon flex
  • amazon pay
  • amazon prime
  • amazon prime air
  • amazon prime video
  • amazon.subtember
  • Amazon's
  • amazonalexa
  • amazonpay
  • Ambient
  • amd
  • AMD's
  • American
  • american horror story
  • Amnesia
  • Among
  • amongst
  • ampere
  • analysis
  • anarchists
  • anc
  • Ancient
  • andrea riseborough
  • andrea stewart
  • android
  • android 10
  • android auto
  • android automotive
  • android tablet
  • Android's
  • android10
  • androidtablet
  • animal crossing
  • animation
  • anime
  • anker
  • anker deals
  • annihilation
  • anniversary
  • announcements
  • announces
  • anode
  • Another
  • ant man 3
  • antenna
  • anthony carrigan
  • anti-cheat
  • anti-tracking
  • antibiotics
  • antibodies
  • antibody
  • anticipated
  • antifa
  • antitrust
  • Antiviral
  • antlers
  • anwr
  • anxiety
  • anxious
  • anya taylor joy
  • anyone
  • Aorus
  • apartments
  • apollo 11
  • apologizes
  • app
  • app store
  • apparel
  • appeals
  • apple
  • apple arcade
  • apple arm
  • apple deals
  • apple health
  • apple inc
  • apple rumors
  • apple safari
  • apple silicon
  • apple store
  • apple tv
  • apple vs epic
  • apple watch
  • apple watch series 3
  • Apple's
  • application
  • approaching
  • approximately
  • apps
  • ar
  • Arcade
  • arcade stick
  • archives
  • arctic
  • arctic national wildlife refuge
  • area51m
  • argument
  • arm
  • arnold schwarzenneger
  • art gallery
  • artemis mission
  • Artificial Intelligence
  • arturia
  • asobo studio
  • asphalt
  • Assassin's
  • astro
  • astro gaming
  • Astro's
  • astrogaming
  • Astronomers
  • astronomy
  • Astrophysics
  • asus rog strix scar g15
  • asus rog strix scar g15 review
  • Asus'
  • at home fitness
  • at&t
  • atomic
  • attach
  • Attackers
  • Attacking
  • attempts
  • attorney general
  • auction
  • audible
  • audio
  • audiobooks
  • augmented reality
  • augmented reality glasses
  • august
  • august wifi smart lock
  • aukey
  • aukey deals
  • Aurora
  • australia
  • Australia's
  • Australian
  • australian police
  • Authenticator
  • Authorities
  • authors
  • autofocus
  • automation
  • Autonomous
  • autonomous vehicle
  • Autophagy
  • autopilot
  • autopilot system
  • autoplay
  • av
  • available
  • avatar the last airbender
  • Avengers
  • aviation
  • ayo edibiri
  • azula
  • babies
  • baby yoda
  • backhaul
  • backwards compatibility
  • bacteria
  • balloon
  • ban
  • barrierfree
  • bass
  • batman
  • batman the animated series
  • batmobile
  • batteries
  • battery
  • Battery-free
  • battle
  • battle royale
  • bay area
  • be prepared
  • Beating
  • beats
  • beats deals
  • beautiful
  • beauty
  • bedding
  • bedroom
  • beer
  • behavior
  • behind the scenes
  • Being
  • Belgian
  • believed
  • Bering
  • bering sea
  • best buy deals
  • best of gizmodo
  • beta
  • bethesda
  • bh deals
  • bh photo deals
  • bicycle
  • biden
  • biden-harris
  • big boys
  • big mouth
  • big oil
  • bigger
  • biggest
  • bike
  • bill and ted face the music
  • bill barr
  • bill sienkiewicz
  • billion
  • billy crystal
  • biocontainment
  • biodiversity
  • biohackers
  • biohacking
  • biological
  • bird box
  • Birds
  • bitcoin
  • Black
  • black christmas
  • black hole
  • black lives matter
  • black panther
  • black widow
  • Blade
  • blast
  • blink
  • blink indoor
  • blink outdoor
  • block
  • blocks
  • blogging
  • Blood
  • blood-clotting
  • blu de barrio
  • blu hunt
  • Blu-ray
  • bluetooth
  • bluetooth headphones
  • bluetooth speaker
  • bluetooth speakers
  • bmi
  • board games
  • boat parade
  • boats
  • bob mcleod
  • Bobble
  • bolsonaro
  • bomberman
  • boneless chicken wings
  • book review
  • books
  • bookshelf injection
  • boosts
  • bounce music
  • box office
  • boxes
  • boycott
  • Boyega
  • braille
  • brain
  • brain computer interface
  • brain computer interfaces
  • brain-machine interface
  • Brainstem
  • brand-new
  • branding
  • brandon cronenberg
  • brazil
  • breakdown
  • breaks
  • breast
  • brigette lundy paine
  • brings
  • broadband
  • broadcast
  • brookings institution press
  • brooklyn
  • browser
  • budget
  • budget laptops
  • bug
  • bug fixes
  • bugs
  • build
  • builds
  • bulk collection
  • bulk data collection
  • bullshit resistance school
  • burned
  • burning
  • burrowing
  • business
  • business laptops
  • butterfly
  • buyers guide
  • bytedance
  • cadmium
  • cake
  • california
  • california wildfires
  • call of duty
  • call of duty black ops cold war
  • call of duty league
  • call of duty: warzone
  • called
  • callofduty
  • callofdutyblackopscoldwar
  • callofdutyleague
  • Calls
  • calltoaction
  • Cambrian
  • camera
  • cameras
  • campaign
  • campaign signs
  • Can't
  • cancer
  • cancer alley
  • canine
  • Canon
  • captain america
  • captions
  • capture
  • Capturing
  • car classifications
  • carbon
  • carcinogens
  • cars
  • cartivator
  • cary elwes
  • cases
  • cassandra clare
  • catnap
  • cbs
  • cbs all access
  • cd projekt red
  • cdc
  • cdl
  • cdpr
  • celebrates
  • Cells
  • Celtics
  • censorship
  • century
  • centurylink
  • chadwick boseman
  • chair
  • chairs
  • chamois
  • Champion
  • Championship
  • chance
  • Change
  • changes
  • channel zero
  • charging stations
  • charity
  • charlie heaton
  • cheap
  • cheaper
  • cheapest
  • cheating
  • Check
  • checked
  • cher wang
  • chest
  • chicago
  • chicken wings
  • Children
  • childrens books
  • childs play
  • china
  • Chinese
  • chips
  • chipset
  • choir
  • Cholesterol
  • chris claremont
  • chris matheson
  • christmas
  • christopher abbott
  • christopher nolan
  • chrome
  • Chromebooks
  • chucky
  • CineBeam
  • citadel
  • cities
  • city council meeting
  • civil liberties
  • Clarifying
  • class
  • classes
  • Classic
  • clean
  • Cleaning
  • clients
  • Climate
  • climate change
  • climate policy
  • clint barton
  • Clippers
  • clothing
  • cloud
  • cloud computing
  • cloud storage
  • Cloudflare
  • club pro+ tws
  • clusterfucks
  • coastal communities
  • Coaxing
  • cobra jet
  • cobra kai
  • cod
  • coffee
  • collaborative
  • college sports
  • Color
  • colorado
  • colors
  • comcast
  • Comey
  • comics
  • comixology
  • commerce
  • commerce department
  • common
  • commutes
  • company
  • competition
  • complaint
  • completely
  • complimentary
  • compound
  • Comprehensive
  • computational
  • computer
  • computer building
  • computer security
  • computers
  • computing
  • concept art
  • concerning
  • confirmed
  • confirms
  • Connacht
  • connected home
  • connectedhome
  • consciousness
  • conservation
  • Conserve
  • conspiracies
  • conspirators
  • Constant
  • construct
  • Consume
  • consumer tech
  • contact tracing
  • contaminated
  • contamination
  • content moderation
  • continuous
  • contract
  • contractor
  • contractors
  • contracts
  • control
  • controller
  • convert
  • convertible
  • cooking
  • cops
  • cord cutters
  • cordless
  • coronavirus
  • corsair
  • cortisone
  • cosplay
  • costs
  • Could
  • countless
  • courts
  • covertly
  • covid 19
  • covid 19 reopening
  • COVID-
  • cpu
  • cpus
  • created
  • Creativity
  • Creed
  • creepypasta
  • crime
  • criteria
  • critical race theory
  • Croatia
  • cross-site tracking
  • crossover
  • crowdfunding
  • crunchyroll
  • crusher evo
  • Crysis
  • crystal dynamics
  • current
  • cx 400bt
  • CyberGhost
  • Cyberpunk
  • cybersecurity
  • cytokine
  • dangerous
  • daniel prude
  • dark shadows
  • dark web
  • darling
  • darpa
  • das
  • data
  • data portability
  • data privacy
  • data security
  • data transfer project
  • dating
  • david benioff
  • david polfeldt
  • davidbenioff
  • Daylight
  • daylight saving time
  • db weiss
  • dbweiss
  • dc
  • dc comics
  • dc fandome
  • ddos
  • ddos attacks
  • deadly
  • deals
  • dean parisot
  • death
  • debunks
  • debuts
  • Decades-old
  • Deciphering
  • decisions
  • declares
  • deep learning
  • deepfake
  • deepfakes
  • deepmind
  • DeepMind's
  • defending democracy program
  • deficiency
  • deforestation
  • del rey
  • delay
  • delays
  • deletes
  • deliveries
  • delivery
  • dell
  • dell deals
  • demanding
  • democratic party
  • demonstrate
  • demonstrates
  • Demonstrating
  • denim
  • Department
  • department of commerce
  • department of defense
  • Dependence
  • Depot
  • Depression
  • deron j powell
  • Descent
  • describes
  • design
  • designation
  • designers
  • details
  • detecting
  • detection
  • determine
  • dev patel
  • develop
  • developers
  • development
  • developmental
  • device
  • devices
  • dexamethasone
  • diabetes
  • Diabetes-in-a-dish
  • diagnostic
  • didn't
  • diesel
  • diets
  • differing
  • digital
  • digital cameras
  • digital diversions
  • Digital's
  • Dimensity
  • dinosaur
  • dipayan ghosh
  • direct
  • disabilities
  • disasters
  • Discord
  • discount
  • discover
  • discovered
  • Discovering
  • discovers
  • discovery
  • disenchantment
  • disney
  • disney plus
  • disney plus hotstar
  • disneyplus
  • display
  • displayhdr 600
  • Disrespect
  • dissociation
  • distance learning
  • ditch
  • Division
  • diy
  • dji
  • Djokovic
  • dlc
  • dlss
  • dna
  • do all the letters of the alphabet next you cowards
  • docs
  • dod
  • Dodder
  • doesn't
  • dogs
  • doing
  • doj
  • Dollars
  • dolphins
  • don mancini
  • don't
  • donald trump
  • donation
  • donnie yen
  • doom
  • doom eternal
  • doom ii
  • doometernal
  • doorbell
  • doorbell cams
  • doorbells
  • dorm
  • download
  • dragoncon
  • dragster
  • dramatically
  • dream edition
  • Dreamcast
  • drivers
  • driving
  • drone
  • drone delivery
  • drones
  • dropbox
  • drug-resistant
  • drugs
  • dryer
  • dual-screen
  • dune
  • dungeons and dragons
  • duo evo plus
  • Dynabook
  • dynamics
  • Dyson
  • dystopia
  • e-commerce
  • e-ink
  • e-mail
  • ea
  • earbuds
  • earlier
  • Earliest
  • Early
  • earnings
  • earth league international
  • earth observation
  • Earth's
  • easter
  • easter eggs
  • ecg
  • echo auto
  • echo buds
  • echoauto
  • ecofascism
  • economy
  • ed solomon
  • edgar wright
  • edge
  • Edinburgh
  • Edison
  • edison software
  • Edition
  • education
  • edward snowden
  • Effective
  • Elderly
  • election
  • election 2020
  • elections
  • electric
  • electric car
  • electric scooters
  • electric truck
  • electric vehicle
  • electrical
  • electrolyte
  • electron
  • electronic
  • electronic arts
  • electronic skin
  • elephant
  • elephants
  • elon musk
  • emails
  • embedded
  • Emergency
  • emissions
  • enables
  • enc
  • ending
  • endurance peak 2
  • endurance peak ii
  • energy
  • engadget podcast
  • engadgetdeals
  • engadgetpodcast
  • engadgetupscaled
  • Engineers
  • England
  • enhance
  • Enjoy
  • entertainment
  • Entry-level
  • environment
  • environmental protection agency
  • eoin colfer
  • epa
  • epic
  • epic games
  • epic vs apple
  • Epic’s
  • epicgames
  • episode
  • equipped
  • Erangel
  • eshop
  • espionage
  • esports
  • esportssg
  • establish
  • Estrogen
  • eta
  • Europe's
  • European
  • eurorack
  • euthanasia
  • euv
  • ev
  • Every
  • evictions
  • evidence
  • evolution
  • examines
  • excellent
  • exclusive
  • exercise
  • exist
  • expanded universe
  • expands
  • expensive
  • experience accessibility team
  • Experimental
  • explains
  • explorer project
  • export
  • exposure
  • exposure notification
  • extension
  • extinction
  • extreme e
  • extreme ultraviolet
  • extremee
  • exxon
  • exxonmobil
  • faa
  • face masks
  • face shields
  • facebook
  • facebook live
  • facebook wrote a press release
  • Facebook's
  • facilities
  • factors
  • failure
  • Failures
  • fainting
  • fake
  • fake events
  • fake news
  • fakes
  • falcon 9
  • fall 2020
  • fall guys
  • families
  • fascism
  • fast
  • fastest
  • Fastly
  • FAU-G
  • fbi
  • fcc
  • fda
  • FDA's
  • feature
  • federal communications commission
  • federalcommunicationscommission
  • fediverse
  • fedot tumusov
  • Felix
  • Females
  • femtech
  • fertility tech
  • fibre
  • Fidelio
  • Fidelity
  • fields
  • Figuring
  • film
  • finally
  • finally multicolor hue lightstrips
  • Finding
  • finds
  • Finest
  • fingerprint reader
  • fire tv
  • first
  • first amendment
  • fisa
  • fitbit
  • fitbit charge 4
  • fitness
  • fitness bands
  • fitness gear
  • fitness trackers
  • Fitter
  • five eyes
  • flash
  • flaunts
  • flexible
  • flexible display
  • Flight
  • flight simulator 2020
  • flint
  • flood
  • Floppy'
  • florida
  • flowering
  • flying car
  • flying taxis
  • fold 2
  • foldable
  • foldable phone
  • foldables
  • folding
  • Following
  • food
  • food justice
  • food security
  • Food-web
  • football
  • footwear
  • forces
  • forcibly
  • ford
  • fordpass
  • forecast
  • foreign
  • forests
  • Forget
  • fortnite
  • Fortnite's
  • Forty-Year-Old
  • Forward-thinking
  • forwarding limit
  • Fossil
  • fossils
  • found
  • fountain pens
  • fox news
  • fox soccer plus
  • France
  • fraud
  • free
  • free comics
  • free speech
  • free-to-play
  • freshwater
  • Friday
  • frontier
  • fuck fossil fuels
  • Fujifilm
  • full frame cameras
  • full-frame
  • Functions
  • Fungi
  • future
  • g-sync
  • g-sync ultimate
  • g9
  • gadgetry
  • gadgets
  • Galaxy
  • galaxy a42 5g
  • galaxy book flex
  • galaxy book flex 5g
  • galaxy buds plus
  • galaxy fit
  • galaxy fit 2
  • galaxy fold
  • galaxy s20
  • galaxy s20 fan edition
  • galaxy s20 ultra
  • galaxy tab a7
  • galaxy watch 3
  • galaxy z fold 2
  • galaxy z fold 2 5g
  • galaxy z fold2
  • galaxybookflex
  • galaxybookflex5g
  • gallery
  • game & watch
  • game boy
  • game of thrones
  • game-breaking
  • gameboy
  • gameofthrones
  • Gamers
  • games
  • Gamifying
  • gaming
  • gaming desktops
  • gaming gear
  • gaming laptop
  • gaming laptops
  • gaming monitor
  • gaming shelf
  • gas pump
  • gas station
  • gaspump
  • gasstation
  • gear
  • geforce
  • geforce rtx
  • geforce rtx 2060
  • geforce rtx 3080
  • geforcertx3080
  • gene kozicki
  • generous
  • Genes
  • Genetic
  • genetics
  • Genome
  • Genomic
  • Germany
  • Germany's
  • getting
  • getting out
  • giancarlo esposito
  • Giant
  • gig economy
  • gig workers
  • gizmos
  • glaciers
  • glitch
  • global tel link
  • Globalization
  • Gmail
  • go vacation
  • godzilla vs kong
  • gofundme
  • goltv
  • gong li
  • google
  • google ad policy
  • google ads
  • google assistant
  • google assistant snapshot
  • google chrome
  • google docs
  • google drive
  • google images
  • google kids space
  • google magenta
  • google maps
  • google play
  • google podcasts
  • Google's
  • googlekidsspace
  • gopro
  • gorilla glass
  • gotten
  • gpu
  • gpus
  • Graduate
  • Grand
  • grand central publishing
  • graphic neural network
  • graphically-impressive
  • graphics
  • graphics card
  • graphics cards
  • gravitational wave
  • Gravity
  • gravity waves
  • green drone
  • grills
  • groceries
  • growth
  • guidance
  • guidelines
  • guides
  • Guilt
  • Gulls
  • gwichin
  • hackers
  • hacking
  • hairdye
  • halloween
  • Handgrip
  • handing
  • handle
  • happens
  • happier
  • haptics
  • hard truths
  • harder
  • hardware
  • harvard
  • harvard university
  • harvarduniversity
  • hashes
  • Hastings
  • have your cake and eat it too
  • hawc
  • hawk rev vampire slayers
  • hawkeye
  • hbo
  • hbo max
  • hdr10+
  • headache
  • headed
  • headphones
  • headpohones
  • headset
  • headsets
  • health
  • Hearing
  • heart
  • heat wave
  • heat-free
  • Heavy
  • Hedge
  • heliophysics
  • hell to the no
  • hellfeed
  • hello games
  • Helminth
  • Helping
  • henry zaga
  • hepa
  • Here's
  • herman cain
  • heroes
  • hey email app
  • higher
  • highfire
  • hillary clinton
  • hints
  • hisense
  • history
  • hitting the books
  • hittingthebooks
  • holiday
  • holidays
  • home
  • home entertainment
  • home fitness
  • home schooling
  • home security
  • home theater
  • homepage
  • homepod
  • homesecurity
  • homework gap
  • honeybees
  • honeysuckle
  • honor
  • Honor's
  • horror
  • horsepower
  • Hostgator
  • hosting
  • hosts
  • hot toys
  • Hotspots'
  • hotstar
  • House
  • households
  • how to
  • hp
  • hp deals
  • htc
  • Huawei
  • Hubble
  • hue play gradient
  • hugo weaving
  • human
  • Hunter
  • hunters
  • hurricane katrina
  • hurricane laura
  • hurricane season
  • hybrid
  • hypersonic
  • hypersonic missiles
  • hypertension
  • hyperx
  • Hyrule
  • i miss midi music
  • ian alexander
  • iap
  • ice ice maybe
  • ice on thin ice
  • Iceland
  • icloud
  • id software
  • id.4
  • ideas
  • Identification
  • identified
  • identify
  • identity theft
  • idw
  • ifa
  • ifa 2020
  • ifa2020
  • ihome
  • ihome deals
  • imac
  • images
  • imitate
  • immunity
  • immuno-acceptance
  • immunotherapy
  • impacts
  • important
  • improved
  • Improving
  • in-app purchases
  • inc
  • includes
  • income
  • incorrect
  • increase
  • increased
  • India
  • Indian
  • indie
  • individuals
  • indoor
  • inexpensive
  • Infants
  • infection
  • infections
  • infinity ward
  • Inflammation
  • influencer
  • influencers
  • Informing
  • informs
  • infotainment
  • Ingenious
  • initiation
  • injunction
  • Inkjet
  • Insect
  • Insight
  • Insights
  • insta360
  • insta360 one r
  • Instagram
  • instagram reels
  • instagram stories
  • installation
  • Instant
  • instant pot
  • instant pot smart wifi
  • instruments
  • insulin
  • integrated graphics
  • intel
  • intel core i9
  • intel deals
  • intel evo
  • intel xe graphics
  • intelevo
  • interact
  • interior
  • intermediate-mass black hole
  • intermittent computing
  • international
  • internet
  • internet archive
  • internet balloons
  • internet culture
  • internet research agency
  • interventions
  • interview
  • introduce
  • introduces
  • introducing
  • intrusive
  • invest
  • Investigational
  • investment
  • invests
  • invoice
  • ios
  • ios 13
  • ios 13.7
  • ios 14
  • ios13
  • ios14
  • iot
  • ip54
  • ipad
  • ipad air
  • ipad os 14
  • ipados14
  • iPhone
  • iphone 12
  • iphone 12 pro
  • iphone 4
  • iphone 6
  • ipod
  • Islanders
  • isotope
  • israel
  • Italian
  • italy
  • items
  • its business time
  • japan
  • jason scott lee
  • jaxjox
  • jbl
  • jbl clip 4
  • jbl go 3
  • jbl partybox 310
  • jbl partybox on-the-go
  • jbl xtreme 3
  • JBL's
  • jeans
  • jedi
  • jeff bezos
  • jeff bond
  • jennifer jason leigh
  • jenny slate
  • jet li
  • jetpacks
  • jim butcher
  • JioFiber
  • jj abrams
  • joe biden
  • johnson johnson
  • jon favreau
  • jonathan majors
  • jordan eldredge
  • jordan peele
  • josh boone
  • josh guillory
  • journalism
  • juicer
  • july 4th
  • Jumping'
  • jumpstarts
  • jurassic world dominion
  • jurnee smollett
  • just transition
  • Justice
  • juul
  • jw nijman
  • jw rinzler
  • kamala harris
  • Karaoke
  • karate kid
  • kate bishop
  • kate bush
  • keanu reeves
  • Keeping
  • kenosha
  • kevin conway
  • keyboards
  • keystep
  • keystep pro
  • kick stage
  • Kidneys
  • kids
  • killer
  • king of sweden
  • kinja deals
  • konami
  • koofr
  • kotaku core
  • kotakucore
  • lab-grown
  • Labor
  • lafayette police chief scott morgan
  • laika
  • Lakers
  • lana wachowski
  • landlords
  • laptop
  • laptops
  • large attachments
  • largest
  • laser
  • laser tv
  • latest
  • launch
  • launch complex 2
  • launched
  • launches
  • laura ingraham
  • laurencefishburne
  • lawsuit
  • lawsuits
  • layout
  • leader
  • leading
  • leading-edge
  • League
  • league of legends
  • league of legends championship series
  • leak
  • leakages
  • Leaked
  • leaks
  • leaky buckets
  • learn
  • Legends
  • legion
  • legion slim 7i
  • Leinster
  • Lemonade
  • lenovo
  • lenovo legion 7
  • lenovo legion slim 7i
  • lenovo smart clock
  • lenovo smart clock essential
  • lenovo tab m10 hd gen 2
  • lenovo tab p11 pro
  • lenovo yoga
  • lenovo yoga 9i
  • leopard
  • lessen
  • letting
  • lev grossman
  • level
  • lewis hamilton
  • lg
  • lg deals
  • lg wing
  • lgbtq
  • license
  • licensing
  • lidar
  • lifestyle
  • light
  • Lightning
  • lightsabers
  • lightstrips
  • lightweight
  • ligo
  • linked
  • Links
  • Linux
  • lite
  • lithography
  • Little
  • liu cixin
  • liu yifei
  • liucixin
  • live
  • live sports
  • livestream
  • livestreaming
  • lo-fi
  • lo-fi player
  • local news
  • Locating
  • location
  • lockhart
  • lockheed martin
  • Loggerhead
  • logitech
  • logo
  • longread
  • looks
  • loon
  • loses
  • louisiana
  • lovecraft country
  • lovecraft country recaps
  • low-cost
  • Lowe's
  • lower ninth ward
  • lpddr5
  • lsc
  • lucasfilm
  • Lucid
  • lucid air
  • lucid motors
  • LucidLink
  • lucifer
  • Lumix
  • lutron
  • m night shyamalan
  • macbook
  • macbook air
  • macbook pro
  • mach 5
  • mach-e
  • machine learning
  • magenta
  • Magenta's
  • magicbook pro 16
  • magnet
  • magsafe
  • mail
  • mail in ballots
  • mail-in voting
  • Mail's
  • maintain
  • maisie williams
  • makes
  • Making
  • malaria
  • males
  • Managing
  • Mandalorian
  • Mandalorian's
  • mandy patinkin
  • manipulated media
  • map
  • mapping
  • marijuana
  • marine
  • Mario
  • mario kart
  • mario kart live
  • mario kart live home circuit
  • mark zuckerberg
  • market
  • Marketing
  • martial arts
  • marvel
  • marvel cinematic universe
  • marvel comics
  • marvel studios
  • Marvel's
  • marvelentertainment
  • marvels avengers
  • masks
  • massive entertainment
  • massiveentertainment
  • mastodon
  • mastodons
  • mate 40
  • MatePad
  • material
  • mathematical
  • Matric
  • matt ruff
  • matter
  • matterport
  • mattress
  • mattresses
  • mauritius
  • max-q
  • meat
  • mechanical
  • media
  • MediaTek
  • mediatonic
  • medicine
  • mega city one
  • mega-shark
  • meghan markle
  • meghanmarkle
  • meh deals
  • members
  • memes
  • memory
  • mental health
  • mentality
  • mergers and acquistions
  • messages
  • messenger
  • metadata
  • metal gear solid
  • Meteorite
  • method
  • metroid
  • miami
  • michael k williams
  • Microbes
  • microfiber
  • Microgel
  • Microsoft
  • microsoft edge
  • Microsoft's
  • mid-range
  • Middle
  • midi
  • midi controller
  • migrations
  • miir deals
  • military technology
  • militias
  • Millions
  • Minecraft–
  • Miniature
  • minimize
  • mining
  • mirrorless
  • mirrorless cameras
  • misha green
  • misinformation
  • mistakes
  • mite-y
  • mixed reality
  • mixes
  • mobil
  • mobile
  • mobile phones
  • Mobile's
  • mocks
  • model
  • model 3
  • model s
  • model x
  • model y
  • moderna
  • modification
  • mods
  • modular synthesizer
  • mojang
  • molecular
  • Molecule
  • monique candelaria
  • monitor
  • Monitoring
  • Monsters
  • months
  • moon
  • morally bankrupt exploitative shitbags
  • more oled laptops please
  • mortality
  • motherandroid
  • motor vehicles
  • Motorola
  • motorola one
  • motorola one 5g
  • Motorola's
  • Motors
  • mouse
  • moveaudio s200
  • movie
  • movie theaters
  • movies
  • movies anywhere
  • mozilla firefox
  • mq direct deals
  • mr carey
  • msi
  • msi summit
  • msi summit series
  • MSI's
  • mulan
  • multiverses
  • Munster
  • Murray
  • museum
  • museums
  • music
  • music making
  • music quiz
  • musical instruments
  • Musk's
  • mustang
  • mustang mach-e
  • mutations
  • myneato
  • mystery
  • mystery jetpack
  • myths
  • naked
  • naming
  • Nanoearthquakes
  • nanomachine
  • nasa
  • national security agency
  • Nations
  • Natural
  • Nature
  • naughty dog
  • Neanderthals
  • neato
  • neato d10
  • neato d8
  • neato d9
  • nebraska
  • needles
  • needs
  • Neglected
  • nemesis
  • neon
  • nest
  • nest hello
  • netflix
  • networks
  • neuralink
  • neurons
  • new mutants
  • new orleans
  • new swift 5 and swift 3 from acer
  • new tab page
  • new years eve
  • newegg
  • newegg deals
  • newest
  • Newly
  • news
  • newsletter
  • newyork
  • next-gen
  • nfl
  • nfl network
  • nfl redzone
  • ngo
  • nhra nationals
  • nhtsa
  • nick antosca
  • nickelodeon
  • nicolas cage
  • nike
  • nike deals
  • niki caro
  • nikola tesla
  • ninebot
  • ninja
  • nintendo
  • nintendo switch
  • nintendo switch deals
  • Nitro
  • no man's sky
  • no time to die
  • noah ringer
  • noise
  • noise cancelling
  • noise-canceling
  • Nokia
  • nokia 3310
  • Nominet
  • north korea
  • north pole
  • northern
  • nos4a2
  • nostalgia
  • not the fun jedi saga
  • notebook
  • notice
  • Novak
  • Novel
  • novels
  • nsa
  • nsa scandal
  • nubia watch
  • nubia watch review
  • Nuclear
  • Nuggets
  • nuke
  • Nurses
  • nvidai
  • nvidia
  • nvidia geforce
  • nvidia rtx 3070
  • nvidia rtx 3080
  • nvidia rtx 3090
  • Nvidia’s
  • nvidiageforce
  • nxtpaper
  • nyc
  • nypd
  • Ocean
  • oceans
  • oculus quest
  • offer
  • offered
  • offering
  • offers
  • official
  • oil and gas
  • oil spill
  • older
  • Olufsen's
  • olympics
  • on demand
  • oneplus
  • oneplus 7t
  • oneplus watch
  • online
  • online dating application
  • OnlyFans
  • onmail
  • open the flood gates
  • opens
  • operating
  • operating systems
  • Operation
  • opioids
  • Oracle
  • orbit
  • oregon trail
  • origami
  • origin
  • Orion
  • orion pictures
  • others
  • our garbage president
  • outage
  • outages
  • Outbreak
  • Overcast's
  • overheating
  • OVHcloud
  • oxygen
  • P-Series
  • p40 pro
  • pacemakers
  • packages
  • packs
  • paleontology
  • panasonic
  • panasonic lumix s5
  • Panasonic's
  • Pandemic
  • Panther
  • paper
  • paper based electronics
  • paramount
  • participate
  • partybox
  • pascal
  • password
  • patch
  • patent
  • Pattinson
  • pavement
  • paying
  • payments
  • paypal
  • pbug
  • pc
  • pc gaming
  • pc/ laptops
  • pco
  • peacock
  • Peculiar
  • peddling to nowhere
  • pedro pascal
  • peloton
  • penguin random house
  • pens
  • Pentagon
  • People
  • permafrost
  • permanent
  • permanently
  • permuted press
  • Personal
  • personal computing
  • personal data
  • personalization
  • petrochemicals
  • pfizer
  • Philips
  • philips hue
  • phone
  • phone cases
  • phone trees
  • phones
  • Photography
  • photon
  • Photos
  • pictures
  • pilot
  • pins
  • Pinterest
  • pinterest today
  • pique your interest
  • Pixel
  • plague rallies
  • planetary
  • planetary science
  • plans
  • Plant
  • plants
  • Plasmin
  • plastic
  • plastic pollution
  • platforms
  • play store
  • playstation
  • playstation 4
  • playstation 5
  • playstation vr
  • playstation4
  • playstationvr
  • please help my brain its very sick
  • please no
  • pleasure
  • plugin
  • poaching
  • poco x3
  • pocox3
  • podcast
  • podcasts
  • point-of-care
  • pokemon go
  • polar orbit
  • Polestar
  • polestar 2
  • police
  • police shootings
  • policy
  • Political
  • political ads
  • politics
  • Pollination
  • populations
  • porsche
  • Portable
  • portable speaker
  • portable speakers
  • portfolios
  • Portugal
  • possessor
  • Possible
  • Post-COVID
  • postal apocalypse
  • postal service
  • potential
  • powerful
  • powertrain
  • practical magic
  • pre-order
  • Predator
  • predator x25
  • predict
  • predictions
  • pregnancy
  • pregnancy tests
  • prehistoric
  • premier access
  • Premiere
  • premium
  • preorder
  • preorders
  • prepared
  • presents
  • president
  • president trump
  • presige 14 evo
  • pressure cooker
  • pressure-lowering
  • presumably
  • Preventing
  • preview
  • price
  • price drop
  • prices
  • primal
  • Prime
  • prime air
  • prime deliveries
  • prime gaming
  • prime video
  • prince harry
  • princeharry
  • principles
  • print
  • printer
  • Prior
  • prison phone app
  • privacy
  • privacy and security
  • problems
  • processor
  • processors
  • product
  • Products
  • Program
  • programs
  • prohibited
  • project
  • project 10 million
  • project athena
  • projector
  • projectors
  • proof
  • Proposed
  • props
  • propulsion
  • prosthetics
  • protein
  • protests
  • prototype
  • provide
  • ps plus
  • ps vr
  • ps1
  • ps2
  • ps3
  • ps4
  • ps5
  • psvr
  • pubg
  • pubg corporation
  • pubg mobile
  • pubg mobile nordic map
  • pubgmsg
  • purchase
  • purchased
  • purdue university
  • putting
  • pxo
  • qanon
  • qopy notes
  • quadruple
  • Qualcomm
  • qualcomm snapdragon
  • qualcomm snapdragon 8cx gen 2
  • Qualcomm's
  • quantum
  • quarter mile
  • quicker
  • quickly
  • quoll
  • quote
  • quote tweet
  • race
  • race car
  • racing
  • racism
  • Radiocarbon
  • Radiologists
  • Raised
  • ralph macchio
  • ram
  • rami ismail
  • RAMPOW
  • randomised
  • Raptors
  • rare earth metals
  • ray-tracing
  • raytheon
  • raytracing
  • razer
  • razer blade 15
  • razer deals
  • Razer's
  • razr
  • razr 2
  • reaches
  • readily
  • real estate
  • reality
  • Realme
  • realtor
  • recent
  • recipe
  • recommended reading
  • record
  • recreading
  • redesign
  • Redmi
  • reels
  • reface
  • reflex
  • reflex latency analyzer
  • refresh rate
  • Regional
  • regulates
  • regulating
  • regulation
  • reinfection
  • release
  • release date
  • released
  • releasedate
  • releases
  • releasing
  • relic
  • reliever
  • relocation
  • remain
  • remote
  • remote learning
  • remote vehicle setup
  • remove
  • removed
  • renewable energy
  • rental
  • repair
  • Report
  • reportedly
  • reporting
  • representation
  • reproductive health
  • reproductive justice
  • Republican
  • republicans
  • Research
  • Researchers
  • resembles
  • reset
  • resignation
  • resolution
  • Resource
  • respiratory
  • response
  • restriction
  • retail
  • Retest
  • retro
  • retro gaming
  • return
  • return of the jedi
  • retweet
  • retweet with comment
  • reunite
  • reusable
  • reusable spacecraft
  • revealed
  • reveals
  • Revel
  • reverse engineering
  • review
  • reviews
  • Revolt
  • reweaving
  • rexlex
  • rhythm
  • rian johnson
  • rianjohnson
  • richard branson
  • richard donner
  • rick snyder
  • right
  • right wing extremism
  • rights
  • ring
  • riot games
  • rip
  • risks
  • rival
  • riverdale
  • rmit university
  • roadmap
  • roads
  • roav
  • roav deals
  • Robert
  • robert pattinson
  • robert reiner
  • robin wright
  • robot
  • robotic
  • robotic vacuum
  • robots
  • rocket
  • rocket lab
  • rocket league
  • rockets
  • room
  • room 104
  • rosamund pike
  • rosamundpike
  • rough
  • routes
  • royal family
  • royalfamily
  • rtx
  • rtx 30 series
  • rtx 3000
  • rtx 3070
  • rtx 3080
  • rtx 3090
  • rumor
  • rumors
  • running
  • rupert murdoch
  • rural
  • russia
  • s1
  • safety
  • sale
  • sales
  • samara weaving
  • samsung
  • samsung deals
  • samsung galaxy fit2
  • samsung unpacked
  • Samsung's
  • san francisco
  • sandragon 8cx
  • Santana
  • sars cov 2
  • satechi
  • satellite
  • satellites
  • saucy nugs
  • savings
  • scam
  • scams
  • scandals
  • scanwatch
  • school
  • schools
  • sci fi
  • science
  • Scientist
  • scientists
  • scorched
  • score
  • scott pruitt
  • scream 5
  • screen
  • screen pass
  • sd-03
  • Seagate
  • sean bean
  • sean murray
  • seanan mcguire
  • season
  • section 702
  • security
  • security breaches
  • security hacker
  • sedan
  • seeds
  • sega
  • segway
  • segway es2
  • select
  • self driving car
  • self-centered
  • self-driving
  • self-organizing
  • sells
  • semi-autonomous
  • Sennheiser
  • sensing
  • sensor
  • September
  • sequencer
  • sequencing
  • Serena
  • Serengeti
  • Series
  • series 3
  • services
  • Severe
  • Shade
  • Shadowlands
  • shares
  • sharing
  • shenmue
  • shenmue 3
  • shield
  • shopping
  • short-throw projector
  • shortcut
  • shortcuts
  • shows
  • shudder
  • shut up and take my money
  • siberia
  • sick days
  • side deal deals
  • sidedeals
  • sights
  • signs
  • Silicon
  • Silver
  • simply
  • simulating
  • simulation
  • singapore
  • singing
  • sinkholes
  • skin
  • skullcandy
  • skydrive
  • skyscraper
  • slack
  • sleep
  • small
  • smart
  • smart clock
  • smart glasses
  • smart home
  • smart homes
  • smart lighting
  • smart lights
  • smart lock
  • smart speakers
  • smarthome
  • smartlighting
  • smartlock
  • smartphone
  • smartphones
  • smartwatch
  • smartwatches
  • smic
  • smoker
  • smoking
  • snapdragon
  • snapdragon 732g
  • snapdragon 765
  • snapdragon 8cx
  • snapdragon 8cx gen 2
  • social
  • social distancing
  • social life
  • social media
  • social media mistakes
  • social network
  • social networking
  • sociology
  • software
  • solar
  • solo pro
  • solve
  • Songbirds
  • Sonos
  • sony
  • Sony's
  • soundbar
  • south korea
  • southern route
  • space
  • space race
  • spacecraft
  • spaceflight
  • spacelopnik
  • spaceshiptwo
  • SpaceX
  • Spain
  • sparks
  • speaker
  • speakers
  • Special
  • species
  • specifications
  • spectre x360 13
  • speed
  • spent
  • spike
  • spin off
  • split inbox
  • split-second
  • Splitting
  • sports
  • sports plus
  • Spotify-owned
  • spread
  • sputnik v
  • square enix
  • st patricks day
  • stadia
  • Stage
  • stanford university
  • star trek
  • star trek 4
  • star trek discovery
  • star trek the motion picture
  • star trek the motion pictureinside the art and visual effects
  • star wars
  • star wars galaxys edge
  • star wars rebels
  • star wars the high republic
  • star wars the last jedi
  • star wars the rise of skywalker
  • Starlink
  • starlink hits streaming milestone
  • starship
  • start
  • starts
  • starwars
  • state
  • states
  • stationary
  • stationary bike
  • statistics
  • steady
  • stealth 15m
  • Steam
  • steelseries
  • stephen hawking
  • steroids
  • steven spielberg
  • stick
  • stop-motion animation
  • store
  • stories
  • story
  • stranger things
  • stream
  • streaming
  • streaming video
  • streaming wars
  • strength
  • Stress
  • Strix
  • Strokes
  • Strong
  • Structural
  • Structure
  • student
  • Study
  • sturgis
  • sub-6
  • subscription codes
  • subsurface oceans
  • subterranean oceans
  • Subtypes
  • success
  • suffering
  • suicide
  • suicide prevention
  • suited
  • summit b
  • summit e
  • summit series
  • sunglasses
  • sunlight
  • sunrise movement
  • sunscreen
  • Super
  • super bomberman r
  • super bomberman r online
  • super mario
  • super mario 3d all-stars
  • super mario 3d world
  • super mario 64
  • super mario all-stars
  • super mario bros.
  • super mario bros. 35
  • super mario galaxy
  • super mario sunshine
  • super typhoons
  • superlist
  • superman and lois
  • superpowers
  • SuperTank
  • supplier
  • support
  • supposedly
  • Supra
  • Surface
  • surface duo
  • surprise
  • surprising
  • surveillance
  • susanna clarke
  • suv
  • swamp thing
  • sweden
  • Swift
  • swift 3
  • swift 5
  • swift3
  • switch
  • switch online
  • syfy
  • syndrome
  • synth
  • synthesizer
  • Synthetic
  • T-Mobile
  • T-Mobile's
  • tablet
  • tabletop games
  • tablets
  • take-two interactive
  • takes
  • taobao
  • tar
  • taser
  • tattoo
  • taxes
  • taycan
  • taycan cross turismo
  • tcl
  • tcl nxtpaper
  • TCL's
  • team joe
  • Team's
  • TeamGroup
  • tease
  • tech policy
  • technique
  • technology
  • TechRadar's
  • teenage engineering
  • Teenagers
  • telecom
  • telecoms
  • telemate
  • TELEVISION
  • telmate
  • Tencent
  • tencent games
  • Tenet
  • terms
  • terms of disservice
  • tesla
  • tesla model s
  • test flight
  • testbed
  • testing
  • tetris
  • texas
  • text-to-speech
  • textlies
  • thanks
  • that's
  • the 100
  • the amazon is burning at an alarming rate
  • the avengers
  • the batman
  • the best keyboards
  • the best of gizmodo
  • the best stories of the week
  • the best tech for remote learning
  • the boys
  • the descent
  • the division 2
  • the dream architects
  • the engadget podcast
  • the goonies
  • the host
  • the last campfire
  • the last of us
  • the last of us part ii
  • the magicians
  • the mandalorian
  • the matrix
  • the matrix 4
  • the multivorce
  • the new mutants
  • the premiere
  • the princess bride
  • the riddler
  • the silver arrow
  • the sims
  • the three-body problem
  • the walking dead
  • the witcher 3
  • thebuyersguide
  • thedivision2
  • theengadgetpodcast
  • themandalorian
  • theme partks
  • themorningafter
  • theory
  • Therapeutic
  • therapy
  • There
  • There's
  • These
  • thethreebodyproblem
  • they call it global warming for a reason
  • they cloned tyrone
  • things
  • think
  • third
  • this is not the future
  • thom browne
  • Thousands
  • thps
  • thq
  • thrawn
  • thrawn ascendancy chaos rising
  • threatening
  • Three
  • Throne
  • throwing
  • TicWatch
  • Tiger
  • tiger lake
  • tiktok
  • tim sweeney
  • Time's
  • timothy olyphant
  • timothy zahn
  • titan books
  • Today
  • Today's
  • toilets
  • tokyo olympics
  • tomorrow
  • tony hawk
  • tony hawk's pro skater
  • tools
  • totally
  • toyota
  • track
  • tracy deonn
  • trade
  • trade war
  • traffic
  • trailers
  • trainees
  • transfer
  • transit
  • transmission
  • transportation
  • trayford pellerin
  • tread
  • treadmill
  • treat
  • treatment
  • trees
  • trending topic
  • treyarch
  • trials
  • tricks
  • tripled
  • trivia
  • true wireless
  • true wireless earbuds
  • truestrike
  • trump
  • trump administration
  • trump rallies
  • Trump's
  • trumps america
  • tslaq
  • tucker carlson
  • tumors
  • Tungsten
  • turing
  • turned
  • turntables
  • turtles
  • tv
  • tvs
  • tweets
  • twist
  • twitch
  • twitch sings
  • twitter
  • typhoons
  • typical
  • uber
  • Ubisoft
  • Ubisoft's
  • ufc
  • ufc 4
  • ula
  • Ulster
  • Ultra
  • ultra short throw projector
  • Ultrabooks
  • ultraportables
  • unboxing
  • Uncategorized @hi
  • Unconventional
  • uncover
  • Uncovering
  • under-display
  • understanding
  • unexpected
  • unfair
  • unfiltered
  • unintentionally
  • union
  • unionization
  • Unique
  • United
  • united launch alliance
  • united nations
  • unlock
  • unprecedented
  • unreal engine
  • unveils
  • upcoming
  • Update
  • upgrade
  • upper
  • us air force
  • us military
  • usda
  • user data
  • user review
  • user review roundup
  • user reviews
  • userreview
  • userreviewroundup
  • userreviews
  • users
  • Using
  • usps
  • ust
  • vacation
  • vaccine
  • Vaccines
  • vacuum
  • valentines day
  • validates
  • valve
  • vanderbilt university
  • vantrue
  • vaping
  • variations
  • vava
  • vava deals
  • vehicle
  • vehicles
  • Velour
  • Venom
  • verizon
  • version 1.7.14.0
  • vertical
  • vesa
  • vfx
  • vibert thio
  • vicarious visions
  • victoria
  • victorian police
  • videgames
  • video
  • video authenticator
  • video cards
  • video games
  • video streaming
  • videocards
  • videos
  • vinyl
  • viral videos
  • virgin galactic
  • virginia
  • Virgo
  • virtual
  • virtual reality
  • virtual showroom
  • virtual tour
  • Viruses
  • visually impaired
  • Vitamin
  • Vizio
  • vlambeer
  • vlogging
  • vod
  • voice acting
  • voice assistant
  • Volkswagen
  • volta zero
  • voting
  • voting information center
  • vr
  • vr gaming
  • vrgaming
  • vss unity
  • vulnerable
  • wakanda
  • wallops island
  • wally wingert
  • Walmart
  • walmart is coming
  • wanted pinkertons
  • wants
  • Warcraft
  • warner bros
  • warp drive
  • warp drive software
  • warp drive system
  • Warriors
  • Wasps
  • watch
  • watch es
  • watch gs pro
  • watch it nerds
  • watch parties
  • watches
  • water
  • water resistant
  • waze
  • wearable
  • wearables
  • weather
  • weather is happening
  • web
  • web browsers
  • web tracking
  • webcams
  • weber
  • weber smokefire ex4
  • weber smokefire ex4 review
  • website
  • weed
  • weeklydeals
  • weigh
  • Weight
  • Welcome
  • wernher von braun
  • West'
  • western
  • western digital
  • western digital deals
  • whales
  • What's
  • whatever
  • WhatsApp
  • Where
  • Which
  • white house
  • white privilege
  • whole foods market
  • why is it always florida
  • widescreen
  • wifi
  • wifi 6
  • wifi smart lock
  • wifi6
  • wikipedia
  • wildfire season is year round now
  • wildfires
  • wildleaks
  • wildlife
  • william zabka
  • Williams
  • winamp skin museum
  • windows
  • windows 10
  • windows 95
  • windows on arm
  • wing
  • winner
  • winning
  • wireless
  • wireless energy transfer
  • wireless headphones
  • wisconsin
  • wishes
  • Witcher
  • withdraws
  • withings
  • withings scanwatch
  • Wolves
  • Women
  • won't
  • wonder woman 1984
  • woodpeckers
  • Wool-like
  • WordPress
  • worker rights
  • workers
  • working
  • workout
  • workplace
  • workstation
  • World
  • world health organization
  • world's
  • worsens
  • worst
  • worth
  • writing
  • Wrong-way'
  • wynonna earp
  • x men
  • X-ray
  • x3
  • x44
  • xbox
  • xbox deals
  • xbox live gold
  • xbox series s
  • xbox series x
  • Xiaomi
  • Xiaomi's
  • Xperia
  • xperia 5 ii
  • xps 13
  • Yahoo
  • years
  • Yellowstone
  • yoda
  • yoga
  • yoson an
  • you get a laptop and you get a laptop
  • you're
  • youku
  • Young
  • your news update
  • youtube
  • youtube tv
  • yu suzuki
  • yummy
  • yves maitre
  • z
  • zack snyder
  • zenbook 13
  • zenbook flip 13
  • zenbook flip s
  • zenbook s
  • Zendure
  • Zenfone
  • zimbabwe
  • zombies
  • Zooming
  • zoox
  • zte
  • zuko

Advertise

Contact us

Follow Us

Recent News

realme-gt-5g-स्पेसिफिकेशंस-वाया-गीकबेंच-लिस्टेड,-रिटेल-बॉक्स-इमेज-सर्फेस

Realme GT 5G स्पेसिफिकेशंस वाया गीकबेंच लिस्टेड, रिटेल बॉक्स इमेज सर्फेस

फ़रवरी 27, 2021
वार्नर-ब्रदर्स-के-निर्माण-में-सुपरमैन-रीबूट,-लेखक-के-रूप-में-ता-नेहसी-कोट-के-साथ,-जे.जे-अब्राम्स-निर्देशक-के-रूप-में

वार्नर ब्रदर्स के निर्माण में सुपरमैन रीबूट, लेखक के रूप में ता-नेहसी कोट के साथ, जे.जे अब्राम्स निर्देशक के रूप में

फ़रवरी 27, 2021

जिज्ञासा ज़रूरी है इसीलिए हम आपको देंगे जानकारी जो आपकी जिज्ञासा की प्यास को बुझा देगी
© JIGYAASA.IN

No Result
View All Result
  • Home

© 2020 JIGYAASA.IN